CONTINUOUS TIME QUANTUM WALKS AND QUOTIENT GRAPHS

2011 ◽  
Vol 09 (03) ◽  
pp. 1005-1017
Author(s):  
R. SUFIANI ◽  
S. NAMI ◽  
M. GOLMOHAMMADI ◽  
M. A. JAFARIZADEH

Continuous-time quantum walks (CTQW) over finite group schemes is investigated, where it is shown that some properties of a CTQW over a group scheme defined on a finite group G induces a CTQW over group scheme defined on G/H, where H is a normal subgroup of G with prime index. This reduction can be helpful in analyzing CTQW on underlying graphs of group schemes. Even though this claim is proved for normal subgroups with prime index (using the Clifford's theorem from representation theory), it is checked in some examples that for other normal subgroups or even non-normal subgroups, the result is also true! It means that CTQW over the graph on G, starting from any arbitrary vertex, is isomorphic to the CTQW over the quotient graph on G/H if we take the sum of the amplitudes corresponding to the vertices belonging to the same cosets.

2017 ◽  
Vol 166 (2) ◽  
pp. 297-323
Author(s):  
HAO CHANG ◽  
ROLF FARNSTEINER

AbstractLet be a finite group scheme over an algebraically closed field k of characteristic char(k) = p ≥ 3. In generalisation of the familiar notion from the modular representation theory of finite groups, we define the p-rank rkp() of and determine the structure of those group schemes of p-rank 1, whose linearly reductive radical is trivial. The most difficult case concerns infinitesimal groups of height 1, which correspond to restricted Lie algebras. Our results show that group schemes of p-rank ≤ 1 are closely related to those being of finite or domestic representation type.


2019 ◽  
Vol 155 (2) ◽  
pp. 424-453 ◽  
Author(s):  
Dave Benson ◽  
Srikanth B. Iyengar ◽  
Henning Krause ◽  
Julia Pevtsova

A duality theorem for the stable module category of representations of a finite group scheme is proved. One of its consequences is an analogue of Serre duality, and the existence of Auslander–Reiten triangles for the $\mathfrak{p}$-local and $\mathfrak{p}$-torsion subcategories of the stable category, for each homogeneous prime ideal $\mathfrak{p}$ in the cohomology ring of the group scheme.


2001 ◽  
Vol 131 (3) ◽  
pp. 405-425 ◽  
Author(s):  
CHRISTOPHER P. BENDEL

Let G be a finite group scheme over a field k, that is, an affine group scheme whose coordinate ring k[G] is finite dimensional. The dual algebra k[G]* ≡ Homk(k[G], k) is then a finite dimensional cocommutative Hopf algebra. Indeed, there is an equivalence of categories between finite group schemes and finite dimensional cocommutative Hopf algebras (cf. [19]). Further the representation theory of G is equivalent to that of k[G]*. Many familiar objects can be considered in this context. For example, any finite group G can be considered as a finite group scheme. In this case, the algebra k[G]* is simply the group algebra kG. Over a field of characteristic p > 0, the restricted enveloping algebra u([gfr ]) of a p-restricted Lie algebra [gfr ] is a finite dimensional cocommutative Hopf algebra. Also, the mod-p Steenrod algebra is graded cocommutative so that some finite dimensional Hopf subalgebras are such algebras.Over the past thirty years, there has been extensive study of the modular representation theory (i.e. over a field of positive characteristic p > 0) of such algebras, particularly in regards to understanding cohomology and determining projectivity of modules. This paper is primarily interested in the following two questions:Questions1·1. Let G be a finite group scheme G over a field k of characteristic p > 0, and let M be a rational G-module.(a) Does there exist a family of subgroup schemes of G which detects whether M is projective?(b) Does there exist a family of subgroup schemes of G which detects whether a cohomology class z ∈ ExtnG(M, M) (for M finite dimensional) is nilpotent?


2018 ◽  
Vol 30 (2) ◽  
pp. 479-495
Author(s):  
Yang Pan

AbstractWe investigate the saturation rank of a finite group scheme defined over an algebraically closed field{\Bbbk}of positive characteristicp. We begin by exploring the saturation rank for finite groups and infinitesimal group schemes. Special attention is given to reductive Lie algebras and the second Frobenius kernel of the algebraic group{\operatorname{SL}_{n}}.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 586 ◽  
Author(s):  
Xin Wang ◽  
Yi Zhang ◽  
Kai Lu ◽  
Xiaoping Wang ◽  
Kai Liu

The isomorphism problem involves judging whether two graphs are topologically the same and producing structure-preserving isomorphism mapping. It is widely used in various areas. Diverse algorithms have been proposed to solve this problem in polynomial time, with the help of quantum walks. Some of these algorithms, however, fail to find the isomorphism mapping. Moreover, most algorithms have very limited performance on regular graphs which are generally difficult to deal with due to their symmetry. We propose IsoMarking to discover an isomorphism mapping effectively, based on the quantum walk which is sensitive to topological structures. Firstly, IsoMarking marks vertices so that it can reduce the harmful influence of symmetry. Secondly, IsoMarking can ascertain whether the current candidate bijection is consistent with existing bijections and eventually obtains qualified mapping. Thirdly, our experiments on 1585 pairs of graphs demonstrate that our algorithm performs significantly better on both ordinary graphs and regular graphs.


2017 ◽  
Vol 31 (1) ◽  
pp. 265-302 ◽  
Author(s):  
Dave Benson ◽  
Srikanth B. Iyengar ◽  
Henning Krause ◽  
Julia Pevtsova

Sign in / Sign up

Export Citation Format

Share Document