Fidelity, sub-fidelity, super-fidelity and their preservers

2015 ◽  
Vol 13 (03) ◽  
pp. 1550027
Author(s):  
Li Wang ◽  
Jinchuan Hou ◽  
Kan He

Sub- and super-fidelity describe respectively the lower and super bound of fidelity of quantum states. In this paper, we obtain several properties of sub- and super-fidelity for both finite- and infinite-dimensional quantum systems. Furthermore, let H be a separable complex Hilbert space and ϕ : 𝒮(H) → 𝒮(H) a map, where 𝒮(H) denotes the convex set of all states on H. We show that, if dim H < ∞, or, if dim H = ∞ and ϕ is surjective, then the following statements are equivalent: (1) ϕ preserves the super-fidelity; (2) ϕ preserves the fidelity; (3) ϕ preserves the sub-fidelity; (4) there exists a unitary or an anti-unitary operator U on H such that ϕ(ρ) = UρU† for all ρ ∈ 𝒮(H).

1969 ◽  
Vol 21 ◽  
pp. 1421-1426 ◽  
Author(s):  
Heydar Radjavi

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space ℋ is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.This work was motivated by a well-known resul t of Halmos and Kakutani (3) that every unitary operator on ℋ is the product of four symmetries, i.e., operators that are self-adjoint and unitary.1. By “operator” we shall mean bounded linear operator. The space ℋ will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on ℋ by and that of symmetries by .


2020 ◽  
Vol 18 (08) ◽  
pp. 2150003
Author(s):  
Ting Zhang ◽  
Xiaofei Qi

Relative entropies play important roles in classical and quantum information theory. In this paper, we discuss the sandwiched Rényi relative entropy for [Formula: see text] on [Formula: see text] (the cone of positive trace-class operators acting on an infinite-dimensional complex Hilbert space [Formula: see text]) and characterize all surjective maps preserving the sandwiched Rényi relative entropy on [Formula: see text]. Such transformations have the form [Formula: see text] for each [Formula: see text], where [Formula: see text] and [Formula: see text] is either a unitary or an anti-unitary operator on [Formula: see text]. Particularly, all surjective maps preserving sandwiched Rényi relative entropy on [Formula: see text] (the set of all quantum states on [Formula: see text]) are necessarily implemented by either a unitary or an anti-unitary operator.


1966 ◽  
Vol 18 ◽  
pp. 897-900 ◽  
Author(s):  
Peter A. Fillmore

In (2) Halmos and Kakutani proved that any unitary operator on an infinite-dimensional Hilbert space is a product of at most four symmetries (self-adjoint unitaries). It is the purpose of this paper to show that if the unitary is an element of a properly infinite von Neumann algebraA(i.e., one with no finite non-zero central projections), then the symmetries may be chosen fromA.A principal tool used in establishing this result is Theorem 1, which was proved by Murray and von Neumann (6, 3.2.3) for type II1factors; see also (3, Lemma 5). The author would like to thank David Topping for raising the question, and for several stimulating conversations on the subject. He is also indebted to the referee for several helpful suggestions.


1974 ◽  
Vol 26 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Carl Pearcy ◽  
Norberto Salinas

Let be a fixed separable, infinite dimensional complex Hilbert space, and let () denote the algebra of all (bounded, linear) operators on . The ideal of all compact operators on will be denoted by and the canonical quotient map from () onto the Calkin algebra ()/ will be denoted by π.Some open problems in the theory of extensions of C*-algebras (cf. [1]) have recently motivated an increasing interest in the class of all operators in () whose self-commuta tor is compact.


2015 ◽  
Vol 17 (05) ◽  
pp. 1450042
Author(s):  
Weijuan Shi ◽  
Xiaohong Cao

Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. T ∈ B(H) satisfies Weyl's theorem if σ(T)\σw(T) = π00(T), where σ(T) and σw(T) denote the spectrum and the Weyl spectrum of T, respectively, π00(T) = {λ ∈ iso σ(T) : 0 < dim N(T - λI) < ∞}. T ∈ B(H) is said to have the stability of Weyl's theorem if T + K satisfies Weyl's theorem for all compact operator K ∈ B(H). In this paper, we characterize the operator T on H satisfying the stability of Weyl's theorem holds for T2.


2011 ◽  
Vol 50 (1) ◽  
pp. 63-78
Author(s):  
Jiří Janda

ABSTRACT We continue in a direction of describing an algebraic structure of linear operators on infinite-dimensional complex Hilbert space ℋ. In [Paseka, J.- -Janda, J.: More on PT-symmetry in (generalized) effect algebras and partial groups, Acta Polytech. 51 (2011), 65-72] there is introduced the notion of a weakly ordered partial commutative group and showed that linear operators on H with restricted addition possess this structure. In our work, we are investigating the set of self-adjoint linear operators on H showing that with more restricted addition it also has the structure of a weakly ordered partial commutative group.


Author(s):  
Asraa Abdul Jaleel Husien

In the present work, we introduce and study a certain subclass for multivalent analytic functions with negative coefficients defined on complex Hilbert space. We establish a number of geometric properties, like, coefficient estimates, convex set, extreme points and radii of starlikeness and convexity.


Author(s):  
Abbas Kareem Wanas ◽  
S. R. Swamy

In this article, we define a certain new class of multivalent analytic functions with negative coefficients on complex Hilbert space. We derive a number of important geometric properties, such as, coefficient estimates, radii of starlikeness and convexity, extreme points and convex set.


1974 ◽  
Vol 26 (1) ◽  
pp. 247-250 ◽  
Author(s):  
Joel Anderson

Recently R. G. Douglas showed [4] that if V is a nonunitary isometry and U is a unitary operator (both acting on a complex, separable, infinite dimensional Hilbert space ), then V — K is unitarily equivalent to V ⊕ U (acting on ⊕ ) where K is a compact operator of arbitrarily small norm. In this note we shall prove a much more general theorem which seems to indicate "why" Douglas' theorem holds (and which yields Douglas' theorem as a corollary).


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

In this section we introduce the framework of quantum mechanics as it pertains to the types of systems we will consider for quantum computing. Here we also introduce the notion of a quantum bit or ‘qubit’, which is a fundamental concept for quantum computing. At the beginning of the twentieth century, it was believed by most that the laws of Newton and Maxwell were the correct laws of physics. By the 1930s, however, it had become apparent that these classical theories faced serious problems in trying to account for the observed results of certain experiments. As a result, a new mathematical framework for physics called quantum mechanics was formulated, and new theories of physics called quantum physics were developed in this framework. Quantum physics includes the physical theories of quantum electrodynamics and quantum field theory, but we do not need to know these physical theories in order to learn about quantum information. Quantum information is the result of reformulating information theory in this quantum framework. We saw in Section 1.6 an example of a two-state quantum system: a photon that is constrained to follow one of two distinguishable paths. We identified the two distinguishable paths with the 2-dimensional basis vectors and then noted that a general ‘path state’ of the photon can be described by a complex vector with |α0|2 +|α1|2 = 1. This simple example captures the essence of the first postulate, which tells us how physical states are represented in quantum mechanics. Depending on the degree of freedom (i.e. the type of state) of the system being considered, H may be infinite-dimensional. For example, if the state refers to the position of a particle that is free to occupy any point in some region of space, the associated Hilbert space is usually taken to be a continuous (and thus infinite-dimensional) space. It is worth noting that in practice, with finite resources, we cannot distinguish a continuous state space from one with a discrete state space having a sufficiently small minimum spacing between adjacent locations. For describing realistic models of quantum computation, we will typically only be interested in degrees of freedom for which the state is described by a vector in a finite-dimensional (complex) Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document