THE PARAMETER-ROBUST NUMERICAL METHOD BASED ON DEFECT-CORRECTION TECHNIQUE FOR SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS WITH LAYER BEHAVIOR

2010 ◽  
Vol 07 (04) ◽  
pp. 573-594 ◽  
Author(s):  
JUGAL MOHAPATRA ◽  
SRINIVASAN NATESAN

In this article, we consider a defect-correction method based on finite difference scheme for solving a singularly perturbed delay differential equation. We solve the equation using upwind finite difference scheme on piecewise-uniform Shishkin mesh, then apply the defect-correction technique that combines the stability of the upwind scheme and the higher-order central difference scheme. The method is shown to be convergent uniformly in the perturbation parameter and almost second-order convergence measured in the discrete maximum norm is obtained. Numerical results are presented, which are in agreement with the theoretical findings.

Author(s):  
Tesfaye Aga Bullo ◽  
Guy Aymard Degla ◽  
Gemechis File Duressa

A parameter-uniform finite difference scheme is constructed and analyzed for solving singularly perturbed parabolic problems with two parameters. The solution involves boundary layers at both the left and right ends of the solution domain. A numerical algorithm is formulated based on uniform mesh finite difference approximation for time variable and appropriate piecewise uniform mesh for the spatial variable. Parameter-uniform error bounds are established for both theoretical and experimental results and observed that the scheme is second-order convergent. Furthermore, the present method produces a more accurate solution than some methods existing in the literature.   


Sign in / Sign up

Export Citation Format

Share Document