Ball Convergence for a Family of Quadrature-Based Methods for Solving Equations in Banach Space

2017 ◽  
Vol 14 (02) ◽  
pp. 1750017 ◽  
Author(s):  
Ioannis K. Argyros ◽  
Ramandeep Behl ◽  
S. S. Motsa

We present a local convergence analysis for a family of quadrature-based predictor–corrector methods in order to approximate a locally unique solution of an equation in a Banach space setting. In earlier studies such as Howk [2016] [Howk, C. L. [2016] “A classs of efficient quadrature-based predictor–corrector methods for solving nonlinear systems, Appl. Math. Comput. 276, 394–406] the [Formula: see text] order of convergence was shown on the [Formula: see text]-dimensional Euclidean space using Taylor series expansion and hypotheses reaching up to the third-order Fréchet-derivative of the operator involved although only the first-order Fréchet-derivative appears in these methods, which restrict the applicability of these methods. In this paper, we expand the applicability of these methods in a Banach space setting and using hypotheses only on the first Fréchet-derivative. Moreover, we provide computable radii of convergence as well as error bounds on the distances involved using Lipschitz constants. Numerical examples are also presented to solve equations in cases where earlier results cannot apply.

Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

Abstract We present a local convergence analysis for two Traub-Steffensen-like methods in order to approximate a locally unique solution of an equation in a Banach space setting. In earlier studies such as [16, 23] Taylor expansions and hypotheses up to the third Fréchet-derivative are used. We expand the applicability of these methods using only hypotheses on the first Fréchet derivative. Moreover, we obtain a radius of convergence and computable error bounds using Lipschitz constants not given before. Numerical examples are also presented in this study.


Foundations ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 114-127
Author(s):  
Samundra Regmi ◽  
Christopher I. Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George

The celebrated Traub’s method involving Banach space-defined operators is extended. The main feature in this study involves the determination of a subset of the original domain that also contains the Traub iterates. In the smaller domain, the Lipschitz constants are smaller too. Hence, a finer analysis is developed without the usage of additional conditions. This methodology applies to other methods. The examples justify the theoretical results.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 179
Author(s):  
Ramandeep Behl ◽  
Ioannis K. Argyros

Our aim in this article is to suggest an extended local convergence study for a class of multi-step solvers for nonlinear equations valued in a Banach space. In comparison to previous studies, where they adopt hypotheses up to 7th Fŕechet-derivative, we restrict the hypotheses to only first-order derivative of considered operators and Lipschitz constants. Hence, we enlarge the suitability region of these solvers along with computable radii of convergence. In the end of this study, we choose a variety of numerical problems which illustrate that our works are applicable but not earlier to solve nonlinear problems.


Computation ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 69
Author(s):  
Gus I. Argyros ◽  
Michael I. Argyros ◽  
Samundra Regmi ◽  
Ioannis K. Argyros ◽  
Santhosh George

The method of discretization is used to solve nonlinear equations involving Banach space valued operators using Lipschitz or Hölder constants. But these constants cannot always be found. That is why we present results using ω− continuity conditions on the Fréchet derivative of the operator involved. This way, we extend the applicability of the discretization technique. It turns out that if we specialize ω− continuity our new results improve those in the literature too in the case of Lipschitz or Hölder continuity. Our analysis includes tighter upper error bounds on the distances involved.


2021 ◽  
Vol 2 ◽  
pp. 3
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George ◽  
Christopher I. Argyros

In this paper, we revisited the Ostrowski's method for solving Banach space valued equations. We developed a technique  to determine a subset of the original convergence domain and using this new Lipschitz constants derived. These constants are at least as tight as the earlier ones leading to a finer convergence analysis in both the semi-local and the local convergence case. These techniques are very general, so they can be used to extend the applicability of other methods without additional hypotheses. Numerical experiments complete this study.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Ramandeep Behl ◽  
Ioannis K. Argyros

In particular, the problem of approximating a solution of an equation is of extreme importance in many disciplines, since numerous problems from diverse disciplines reduce to solving such equations. The solutions are found using iterative schemes since in general to find closed form solution is not possible. That is why it is important to study convergence order of solvers. We extended the applicability of an eighth-order convergent solver for solving Banach space valued equations. Earlier considerations adopting suppositions up to the ninth Fŕechet-derivative, although higher than one derivatives are not appearing on these solvers. But, we only practiced supposition on Lipschitz constants and the first-order Fŕechet-derivative. Hence, we extended the applicability of these solvers and provided the computable convergence radii of them not given in the earlier works. We only showed improvements for a certain class of solvers. But, our technique can be used to extend the applicability of other solvers in the literature in a similar fashion. We used a variety of numerical problems to show that our results are applicable to solve nonlinear problems but not earlier ones.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3106
Author(s):  
Samundra Regmi ◽  
Christopher I. Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George

We develop a unified convergence analysis of three-step iterative schemes for solving nonlinear Banach space valued equations. The local convergence order has been shown before to be five on the finite dimensional Euclidean space assuming Taylor expansions and the existence of the sixth derivative not on these schemes. So, the usage of them is restricted six or higher differentiable mappings. But in our paper only the first Frèchet derivative is utilized to show convergence. Consequently, the scheme is expanded. Numerical applications are also given to test convergence.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750086
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a unified local convergence analysis for deformed Euler–Halley-type methods in order to approximate a solution of a nonlinear equation in a Banach space setting. Our methods include the Euler, Halley and other high order methods. The convergence ball and error estimates are given for these methods under hypotheses up to the first Fréchet derivative in contrast to earlier studies using hypotheses up to the second Fréchet derivative. Numerical examples are also provided in this study.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650015
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a local convergence analysis for the Jarratt-type method of high convergence order in order to approximate a solution of a nonlinear equation in a Banach space. Our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. Earlier studies use hypotheses up to the third Fréchet-derivative. Hence, the applicability of these methods is expanded under weaker hypotheses and less computational cost for the constants involved in the convergence analysis. Numerical examples are also provided in this study.


Sign in / Sign up

Export Citation Format

Share Document