scholarly journals A hidden life of Peregrine's soliton: Rouge waves in the oceanic depths

2014 ◽  
Vol 11 (06) ◽  
pp. 1450057 ◽  
Author(s):  
Alla Yurova

Although the Peregrine-type solutions of the nonlinear Schrödinger (NLS) equation have long been associated mainly with the infamous "rouge waves" on the surface of the ocean, they might have a much more interesting role in the oceanic depths; in this paper we show that these solutions play an important role in the evolution of the intrathermocline eddies, also known as the "oceanic lenses". In particular, we show that the collapse of a lens is determined by the particular generalization of the Peregrine soliton — the so-called exultons — of the NLS equation. In addition, we introduce a new mathematical method of construction of a vortical filament (a frontal zone of a lens) from a known one by the Darboux transformation.

2015 ◽  
Vol 70 (12) ◽  
pp. 1039-1048 ◽  
Author(s):  
Jing Yu ◽  
Jingwei Han ◽  
Jingsong He

AbstractIn this paper, the determinant representation of the n-fold binary Darboux transformation, which is a 2×2 matrix, for the Ablowitz–Kaup–Newell–Segur equation is constructed. In this 2×2 matrix, each element is expressed by (2n+1)-order determinants. When the reduction condition r=–q̅ is considered, we obtain one of binary Darboux transformations for the nonlinear Schrödinger (NLS) equation. As its applications, several solutions are constructed for the NLS equation. Especially, a new form of two-soliton is given explicitly.


2013 ◽  
Vol 27 (29) ◽  
pp. 1350216 ◽  
Author(s):  
JINGWEI HAN ◽  
JING YU ◽  
JINGSONG HE

The determinant expression T[N] of a new Darboux transformation (DT) for the Ablowitz–Kaup–Newell–Segur equation are given in this paper. By making use of this DT under the reduction r = q*, we construct determinant expressions of dark N-soliton solution for the defocusing NLS equation. Except known one-soliton, we provide smooth two-soliton and smooth N-soliton on a certain domain of parameter for the defocusing NLS equation.


2016 ◽  
Vol 30 (10) ◽  
pp. 1650106 ◽  
Author(s):  
Hai-Qiang Zhang ◽  
Jian Chen

In this paper, we study a higher-order variable coefficient nonlinear Schrödinger (NLS) equation, which plays an important role in the control of the ultrashort optical pulse propagation in nonlinear optical systems. Then, we construct a generalized Darboux transformation (GDT) for the higher-order variable coefficient NLS equation. The [Formula: see text]th order rogue wave solution is obtained by the iterative rule and it can be expressed by the determinant form. As application, we calculate rogue waves (RWs) from first- to fourth-order in accordance with different kinds of parameters. In particular, the dynamical properties and spatial-temporal structures of RWs are discussed and compared with Hirota equation through some figures.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 733
Author(s):  
Yu-Shan Bai ◽  
Peng-Xiang Su ◽  
Wen-Xiu Ma

In this paper, by using the gauge transformation and the Lax pairs, the N-fold Darboux transformation (DT) of the classical three-component nonlinear Schrödinger (NLS) equations is given. In addition, by taking seed solutions and using the DT, exact solutions for the given NLS equations are constructed.


2014 ◽  
Vol 69 (8-9) ◽  
pp. 441-445 ◽  
Author(s):  
Long-Xing Li ◽  
Jun Liu ◽  
Zheng-De Dai ◽  
Ren-Lang Liu

In this work, the rational homoclinic solution (rogue wave solution) can be obtained via the classical homoclinic solution for the nonlinear Schrödinger (NLS) equation and the coupled nonlinear Schrödinger (CNLS) equation, respectively. This is a new way for generating rogue wave comparing with direct constructing method and Darboux dressing technique


Author(s):  
Mostafa M. A. Khater

This paper studies novel analytical solutions of the extended [Formula: see text]-dimensional nonlinear Schrödinger (NLS) equation which is also known with [Formula: see text]-dimensional complex Fokas ([Formula: see text]D–CF) system. Fokas derived this system in 1994 by using the inverse spectral method. This model is considered as an icon model for nonlinear pulse propagation in monomode optical fibers. Many novel computational solutions are constructed through two recent analytical schemes (Ansatz and Projective Riccati expansion (PRE) methods). These solutions are represented through sketches in 2D, 3D, and contour plots to demonstrate the dynamical behavior of pulse propagation in breather, rogue, periodic, lump, and solitary characteristics. The stability property of the obtained solutions is examined based on the Hamiltonian system’s properties. The obtained solutions are checked by putting them back into the original equation through Mathematica 12 software.


2021 ◽  
pp. 2150004
Author(s):  
Yaning Tang ◽  
Jiale Zhou

We investigate the mixed interaction solutions of the coupled nonlinear Schrödinger equations (CNLSE) through the Darboux transformation method. First of all, we derive the nonsingular localized wave solutions for two cases of CNLSE by the Darboux transformation method and matrix analysis method. Furthermore, we take a limit technique to deduce rogue waves and divide the rogue waves into four categories through analyzing their dynamic behaviors. Based on the obtained theorems, the Darboux transformations are presented to solve interaction solutions between distinct nonlinear waves. In this paper, we mainly study four types. Finally, the dynamic characteristics of the constructed these solutions are analyzed by sequences of interesting figures plotted with the help of Maple.


Sign in / Sign up

Export Citation Format

Share Document