Octonion generalization of Pauli and Dirac matrices

2014 ◽  
Vol 12 (01) ◽  
pp. 1550007 ◽  
Author(s):  
B. C. Chanyal

Starting with octonion algebra and its 4 × 4 matrix representation, we have made an attempt to write the extension of Pauli's matrices in terms of division algebra (octonion). The octonion generalization of Pauli's matrices shows the counterpart of Pauli's spin and isospin matrices. In this paper, we also have obtained the relationship between Clifford algebras and the division algebras, i.e. a relation between octonion basis elements with Dirac (gamma), Weyl and Majorana representations. The division algebra structure leads to nice representations of the corresponding Clifford algebras. We have made an attempt to investigate the octonion formulation of Dirac wave equations, conserved current and weak isospin in simple, compact, consistent and manifestly covariant manner.

1985 ◽  
Vol 26 (2) ◽  
pp. 171-176 ◽  
Author(s):  
D. W. Lewis

In this note we consider the question as to which central division algebras occur as the Clifford algebra of a quadratic form over a field. Non-commutative ones other than quaternion division algebras can occur and it is also the case that there are certain central division algebras D which, while not themselves occurring as a Clifford algebra, are such that some matrix ring over D does occur as a Clifford algebra. We also consider the further question as to which involutions on the division algebra can occur as one of two natural involutions on the Clifford algebra.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter proves that Bruhat-Tits buildings exist. It begins with a few definitions and simple observations about quadratic forms, including a 1-fold Pfister form, followed by a discussion of the existence part of the Structure Theorem for complete discretely valued fields due to H. Hasse and F. K. Schmidt. It then considers the generic unramified cases; the generic semi-ramified cases, the generic ramified cases, the wild unramified cases, the wild semi-ramified cases, and the wild ramified cases. These cases range from a unique unramified quadratic space to an unramified separable quadratic extension, a tamely ramified division algebra, a ramified separable quadratic extension, and a unique unramified quaternion division algebra. The chapter also describes ramified quaternion division algebras D₁, D₂, and D₃ over K containing a common subfield E such that E/K is a ramified separable extension.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tejinder P. Singh

AbstractWe have recently proposed a Lagrangian in trace dynamics at the Planck scale, for unification of gravitation, Yang–Mills fields, and fermions. Dynamical variables are described by odd-grade (fermionic) and even-grade (bosonic) Grassmann matrices. Evolution takes place in Connes time. At energies much lower than Planck scale, trace dynamics reduces to quantum field theory. In the present paper, we explain that the correct understanding of spin requires us to formulate the theory in 8-D octonionic space. The automorphisms of the octonion algebra, which belong to the smallest exceptional Lie group G2, replace space-time diffeomorphisms and internal gauge transformations, bringing them under a common unified fold. Building on earlier work by other researchers on division algebras, we propose the Lorentz-weak unification at the Planck scale, the symmetry group being the stabiliser group of the quaternions inside the octonions. This is one of the two maximal sub-groups of G2, the other one being SU(3), the element preserver group of octonions. This latter group, coupled with U(1)em, describes the electrocolour symmetry, as shown earlier by Furey. We predict a new massless spin one boson (the ‘Lorentz’ boson) which should be looked for in experiments. Our Lagrangian correctly describes three fermion generations, through three copies of the group G2, embedded in the exceptional Lie group F4. This is the unification group for the four fundamental interactions, and it also happens to be the automorphism group of the exceptional Jordan algebra. Gravitation is shown to be an emergent classical phenomenon. Although at the Planck scale, there is present a quantised version of the Lorentz symmetry, mediated by the Lorentz boson, we argue that at sub-Planck scales, the self-adjoint part of the octonionic trace dynamics bears a relationship with string theory in 11 dimensions.


2017 ◽  
Vol 9 (2) ◽  
pp. 95
Author(s):  
Andre S. Diabang ◽  
Alassane Diouf ◽  
Mankagna A. Diompy ◽  
Alhousseynou Ba

In this paper, we study partially the automorphisms groups of four-dimensional division algebra. We have proved that there is an equivalence between Der(A)=su(2) and Aut(A)=SO(3). For an unitary four-dimensional real division algebra, there is an equivalence between dim(Der(A))=1 and Aut(A)=SO(2).


Author(s):  
Yanyan Wang

In this paper, we consider the generalized approximate boundary synchronization for a coupled system of wave equations with Dirichlet boundary controls. We analyse the relationship between the generalized approximate boundary synchronization and the generalized exact boundary synchronization, give a sufficient condition to realize the generalized approximate boundary synchronization and a necessary condition in terms of Kalman’s matrix, and show the meaning of the number of total controls. Besides, by the generalized synchronization decomposition, we define the generalized approximately synchronizable state, and obtain its properties and a sufficient condition for it to be independent of applied boundary controls.


Author(s):  
Joseph Wilson ◽  
Matt Visser

We present a compact Baker–Campbell–Hausdorff–Dynkin formula for the composition of Lorentz transformations [Formula: see text] in the spin representation (a.k.a. Lorentz rotors) in terms of their generators [Formula: see text]: [Formula: see text] This formula is general to geometric algebras (a.k.a. real Clifford algebras) of dimension [Formula: see text], naturally generalizing Rodrigues’ formula for rotations in [Formula: see text]. In particular, it applies to Lorentz rotors within the framework of Hestenes’ spacetime algebra, and provides an efficient method for composing Lorentz generators. Computer implementations are possible with a complex [Formula: see text] matrix representation realized by the Pauli spin matrices. The formula is applied to the composition of relativistic 3-velocities yielding simple expressions for the resulting boost and the concomitant Wigner angle.


1978 ◽  
Vol 30 (01) ◽  
pp. 161-163 ◽  
Author(s):  
Gary R. Greenfield

Let D be a division algebra and let D* denote the multiplicative group of nonzero elements of D. In [3] Herstein and Scott asked whether any subnormal subgroup of D* must be normal in D*. Our purpose here is to show that division algebras over certain p-local fields do not satisfy such a “subnormal property”.


Author(s):  
Bart De Bruyn ◽  
Hendrik Van Maldeghem

AbstractSuppose 𝕆 is an alternative division algebra that is quadratic over some subfield 𝕂 of its center


2012 ◽  
Vol 11 (03) ◽  
pp. 1250052 ◽  
Author(s):  
CÉCILE COYETTE

The first section of this paper yields a sufficient condition for a Mal'cev–Neumann ring of formal series to be a noncrossed product division algebra. This result is used in Sec. 2 to give an elementary proof of the existence of noncrossed product division algebras (of degree 8 or degree p2 for p any odd prime). The arguments are based on those of Hanke in [A direct approach to noncrossed product division algebras, thesis dissertation, Postdam (2001), An explicit example of a noncrossed product division algebra, Math. Nachr.251 (2004) 51–68, A twisted Laurent series ring that is a noncrossed product, Israel. J. Math.150 (2005) 199–2003].


Sign in / Sign up

Export Citation Format

Share Document