scholarly journals Trace dynamics and division algebras: towards quantum gravity and unification

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tejinder P. Singh

AbstractWe have recently proposed a Lagrangian in trace dynamics at the Planck scale, for unification of gravitation, Yang–Mills fields, and fermions. Dynamical variables are described by odd-grade (fermionic) and even-grade (bosonic) Grassmann matrices. Evolution takes place in Connes time. At energies much lower than Planck scale, trace dynamics reduces to quantum field theory. In the present paper, we explain that the correct understanding of spin requires us to formulate the theory in 8-D octonionic space. The automorphisms of the octonion algebra, which belong to the smallest exceptional Lie group G2, replace space-time diffeomorphisms and internal gauge transformations, bringing them under a common unified fold. Building on earlier work by other researchers on division algebras, we propose the Lorentz-weak unification at the Planck scale, the symmetry group being the stabiliser group of the quaternions inside the octonions. This is one of the two maximal sub-groups of G2, the other one being SU(3), the element preserver group of octonions. This latter group, coupled with U(1)em, describes the electrocolour symmetry, as shown earlier by Furey. We predict a new massless spin one boson (the ‘Lorentz’ boson) which should be looked for in experiments. Our Lagrangian correctly describes three fermion generations, through three copies of the group G2, embedded in the exceptional Lie group F4. This is the unification group for the four fundamental interactions, and it also happens to be the automorphism group of the exceptional Jordan algebra. Gravitation is shown to be an emergent classical phenomenon. Although at the Planck scale, there is present a quantised version of the Lorentz symmetry, mediated by the Lorentz boson, we argue that at sub-Planck scales, the self-adjoint part of the octonionic trace dynamics bears a relationship with string theory in 11 dimensions.

1998 ◽  
Vol 13 (14) ◽  
pp. 1115-1132 ◽  
Author(s):  
LAURENT BAULIEU ◽  
CÉLINE LAROCHE

We classify possible "self-duality" equations for p-form gauge fields in space–time dimension up to D=16, generalizing the pioneering work of Corrigan et al. (1982) on Yang–Mills fields (p=1) in 4<D≤8. We impose two crucial requirements. First, there should exist a 2(p+1)-form T-invariant under a subgroup H of SO D. Second, the representation for the SO D curvature of the gauge field must decompose under H in a relevant way. When these criteria are fulfilled, the "self-duality" equations can be candidates of gauge functions for SO D-covariant and H-invariant topological quantum field theories. Intriguing possibilities occur for D≥10 for various p-form gauge fields.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jean Thierry-Mieg ◽  
Peter Jarvis

Abstract We propose an extension of the Yang-Mills paradigm from Lie algebras to internal chiral superalgebras. We replace the Lie algebra-valued connection one-form A, by a superalgebra-valued polyform $$ \tilde{A} $$ A ˜ mixing exterior-forms of all degrees and satisfying the chiral self-duality condition $$ \tilde{A} =^{\ast }{\tilde{A}}_{\chi } $$ A ˜ = ∗ A ˜ χ , where χ denotes the superalgebra grading operator. This superconnection contains Yang-Mills vectors valued in the even Lie subalgebra, together with scalars and self-dual tensors valued in the odd module, all coupling only to the charge parity CP-positive Fermions. The Fermion quantum loops then induce the usual Yang-Mills-scalar Lagrangian, the self-dual Avdeev-Chizhov propagator of the tensors, plus a new vector-scalar-tensor vertex and several quartic terms which match the geometric definition of the supercurvature. Applied to the SU(2/1) Lie-Kac simple superalgebra, which naturally classifies all the elementary particles, the resulting quantum field theory is anomaly-free and the interactions are governed by the super-Killing metric and by the structure constants of the superalgebra.


1991 ◽  
Vol 06 (16) ◽  
pp. 2793-2803 ◽  
Author(s):  
Laurent Baulieu

The Langevin equations describing the quantization of gauge theories have a geometrical structure. We show that stochastically quantized gauge theories are governed by a single differential operator. The latter combines supersymmetry and ordinary gauge transformations. Quantum field theory can be defined on the basis of a Hamiltonian of the type [Formula: see text], where Q has has deep relationship with the conserved BRST charge of a topological gauge theory, and [Formula: see text] is its adjoint. We display the examples of Yang-Mills theory and of 2D gravity. Interesting applications are for first order actions, in particular for the theories defined by the three dimensional Chern Simons action as well as the “two dimensional” ∫M2TrϕF.


Author(s):  
Michael Kachelriess

This book introduces quantum field theory, together with its most important applications to cosmology and astroparticle physics, in a coherent framework. The path-integral approach is employed right from the start, and the use of Green functions and generating functionals is illustrated first in quantum mechanics and then in scalar field theory. Massless spin one and two fields are discussed on an equal footing, and gravity is presented as a gauge theory in close analogy with the Yang–Mills case. Concepts relevant to modern research such as helicity methods, effective theories, decoupling, or the stability of the electroweak vacuum are introduced. Various applications such as topological defects, dark matter, baryogenesis, processes in external gravitational fields, inflation and black holes help students to bridge the gap between undergraduate courses and the research literature.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Machiko Hatsuda ◽  
Shin Sasaki ◽  
Masaya Yata

Abstract We study the current algebras of the NS5-branes, the Kaluza-Klein (KK) five-branes and the exotic $$ {5}_2^2 $$ 5 2 2 -branes in type IIA/IIB superstring theories. Their worldvolume theories are governed by the six-dimensional $$ \mathcal{N} $$ N = (2, 0) tensor and the $$ \mathcal{N} $$ N = (1, 1) vector multiplets. We show that the current algebras are determined through the S- and T-dualities. The algebras of the $$ \mathcal{N} $$ N = (2, 0) theories are characterized by the Dirac bracket caused by the self-dual gauge field in the five-brane worldvolumes, while those of the $$ \mathcal{N} $$ N = (1, 1) theories are given by the Poisson bracket. By the use of these algebras, we examine extended spaces in terms of tensor coordinates which are the representation of ten-dimensional supersymmetry. We also examine the transition rules of the currents in the type IIA/IIB supersymmetry algebras in ten dimensions. Based on the algebras, we write down the section conditions in the extended spaces and gauge transformations of the supergravity fields.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
L. Borsten ◽  
I. Jubb ◽  
V. Makwana ◽  
S. Nagy

Abstract A definition of a convolution of tensor fields on group manifolds is given, which is then generalised to generic homogeneous spaces. This is applied to the product of gauge fields in the context of ‘gravity = gauge × gauge’. In particular, it is shown that the linear Becchi-Rouet-Stora-Tyutin (BRST) gauge transformations of two Yang-Mills gauge fields generate the linear BRST diffeomorphism transformations of the graviton. This facilitates the definition of the ‘gauge × gauge’ convolution product on, for example, the static Einstein universe, and more generally for ultrastatic spacetimes with compact spatial slices.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
M. Cvitan ◽  
P. Dominis Prester ◽  
S. Giaccari ◽  
M. Paulišić ◽  
I. Vuković

Abstract We analyze a novel approach to gauging rigid higher derivative (higher spin) symmetries of free relativistic actions defined on flat spacetime, building on the formalism originally developed by Bonora et al. and Bekaert et al. in their studies of linear coupling of matter fields to an infinite tower of higher spin fields. The off-shell definition is based on fields defined on a 2d-dimensional master space equipped with a symplectic structure, where the infinite dimensional Lie algebra of gauge transformations is given by the Moyal commutator. Using this algebra we construct well-defined weakly non-local actions, both in the gauge and the matter sector, by mimicking the Yang-Mills procedure. The theory allows for a description in terms of an infinite tower of higher spin spacetime fields only on-shell. Interestingly, Euclidean theory allows for such a description also off-shell. Owing to its formal similarity to non-commutative field theories, the formalism allows for the introduction of a covariant potential which plays the role of the generalised vielbein. This covariant formulation uncovers the existence of other phases and shows that the theory can be written in a matrix model form. The symmetries of the theory are analyzed and conserved currents are explicitly constructed. By studying the spin-2 sector we show that the emergent geometry is closely related to teleparallel geometry, in the sense that the induced linear connection is opposite to Weitzenböck’s.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Joonho Kim ◽  
Seok Kim ◽  
Kimyeong Lee

Abstract We explore 6d (1, 0) superconformal field theories with SU(3) and SU(2) gauge symmetries which cascade after Higgsing to the E-string theory on a single M5 near an E8 wall. Specifically, we study the 2d $$ \mathcal{N} $$ N = (0, 4) gauge theories which describe self-dual strings of these 6d theories. The self-dual strings can be also viewed as instanton string solitons of 6d Yang-Mills theories. We find the 2d anomaly-free gauge theories for self-dual strings, amending the naive ADHM gauge theories which are anomalous, and calculate their elliptic genera. While these 2d theories respect the flavor symmetry of each 6d SCFT only partially, their elliptic genera manifest the symmetry fully as these functions as BPS index are invariant in strongly coupled IR limit. Our consistent 2d (0, 4) gauge theories also provide new insights on the non-linear sigma models for the instanton strings, providing novel UV completions of the small instanton singularities. Finally, we construct new 2d quiver gauge theories for the self-dual strings in 6d E-string theory for multiple M5-branes probing the E8 wall, and find their fully refined elliptic genera.


2014 ◽  
Vol 23 (09) ◽  
pp. 1450078
Author(s):  
Victor Ts. Gurovich ◽  
Leonid G. Fel

We calculate the quasiclassical probability to emerge the quantum fluctuation which gives rise to the quark-matter drop with interface propagating as the self-similar spherical detonation wave (DN) in the ambient nuclear matter. For this purpose, we make use of instanton method which is known in the quantum field theory.


Sign in / Sign up

Export Citation Format

Share Document