scholarly journals Liouville integrability of the finite dimensional Hamiltonian systems derived from principal chiral field

2002 ◽  
Vol 43 (10) ◽  
pp. 5002 ◽  
Author(s):  
Zixiang Zhou
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jaume Llibre ◽  
Yuzhou Tian

<p style='text-indent:20px;'>We characterize the meromorphic Liouville integrability of the Hamiltonian systems with Hamiltonian <inline-formula><tex-math id="M2">\begin{document}$ H = \left(p_1^2+p_2^2\right)/2+1/P(q_1, q_2) $\end{document}</tex-math></inline-formula>, being <inline-formula><tex-math id="M3">\begin{document}$ P(q_1, q_2) $\end{document}</tex-math></inline-formula> a homogeneous polynomial of degree <inline-formula><tex-math id="M4">\begin{document}$ 4 $\end{document}</tex-math></inline-formula> of one of the following forms <inline-formula><tex-math id="M5">\begin{document}$ \pm q_1^4 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ 4q_1^3q_2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ \pm 6q_1^2q_2^2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ \pm \left(q_1^2+q_2^2\right)^2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M9">\begin{document}$ \pm q_2^2\left(6q_1^2-q_2^2\right) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ \pm q_2^2\left(6q_1^2+q_2^2\right) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M11">\begin{document}$ q_1^4+6\mu q_1^2q_2^2-q_2^4 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M12">\begin{document}$ -q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M13">\begin{document}$ \mu&gt;-1/3 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M14">\begin{document}$ \mu\neq 1/3 $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M15">\begin{document}$ q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M16">\begin{document}$ \mu \neq \pm 1/3 $\end{document}</tex-math></inline-formula>. We note that any homogeneous polynomial of degree <inline-formula><tex-math id="M17">\begin{document}$ 4 $\end{document}</tex-math></inline-formula> after a linear change of variables and a rescaling can be written as one of the previous polynomials. We remark that for the polynomial <inline-formula><tex-math id="M18">\begin{document}$ q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M19">\begin{document}$ \mu\in\left\{-5/3, -2/3\right\} $\end{document}</tex-math></inline-formula> we only can prove that it has no a polynomial first integral.</p>


2008 ◽  
Vol 22 (13) ◽  
pp. 1307-1315
Author(s):  
RUGUANG ZHOU ◽  
ZHENYUN QIN

A technique for nonlinearization of the Lax pair for the scalar soliton equations in (1+1) dimensions is applied to the symmetric matrix KdV equation. As a result, a pair of finite-dimensional integrable Hamiltonian systems, which are of higher rank generalization of the classic Gaudin models, are obtained. The integrability of the systems are shown by the explicit Lax representations and r-matrix method.


2004 ◽  
Vol 16 (07) ◽  
pp. 823-849 ◽  
Author(s):  
T. SKRYPNYK

We construct a family of infinite-dimensional quasigraded Lie algebras, that could be viewed as deformation of the graded loop algebras and admit Kostant–Adler scheme. Using them we obtain new integrable hamiltonian systems admitting Lax-type representations with the spectral parameter.


2008 ◽  
Vol 22 (32) ◽  
pp. 3179-3194
Author(s):  
QIANG LIU ◽  
DIAN-LOU DU

Based on a 2 × 2 eigenvalue problem, a new (2+1)-dimensional soliton equation is proposed. Moreover, we obtain a finite-dimensional Hamiltonian system. Then we verify it is completely integrable in the Liouville sense. In the end, we introduce a set of Hk polynomial integrable, by which we can separate the solition equation into three compantiable Hamiltonian systems of ordinary differential equation.


Sign in / Sign up

Export Citation Format

Share Document