scholarly journals Classification of real low-dimensional Jacobi (generalized)–Lie bialgebras

2016 ◽  
Vol 14 (01) ◽  
pp. 1750007 ◽  
Author(s):  
A. Rezaei-Aghdam ◽  
M. Sephid

We describe the definition of Jacobi (generalized)–Lie bialgebras [Formula: see text] in terms of structure constants of the Lie algebras [Formula: see text] and [Formula: see text] and components of their 1-cocycles [Formula: see text] and [Formula: see text] in the basis of the Lie algebras. Then, using adjoint representations and automorphism Lie groups of Lie algebras, we give a method for classification of real low-dimensional Jacobi–Lie bialgebras. In this way, we obtain and classify real two- and three-dimensional Jacobi–Lie bialgebras.

Author(s):  
E. R. Shamardina

In this paper, we study the classification of three-dimensional Lie al­gebras over a field of complex numbers up to isomorphism. The proposed classification is based on the consideration of objects invariant with re­spect to isomorphism, namely such quantities as the derivative of a subal­gebra and the center of a Lie algebra. The above classification is distin­guished from others by a more detailed and simple presentation. Any two abelian Lie algebras of the same dimension over the same field are isomorphic, so we understand them completely, and from now on we shall only consider non-abelian Lie algebras. Six classes of three-dimensional Lie algebras not isomorphic to each other over a field of complex numbers are presented. In each of the classes, its properties are described, as well as structural equations defining each of the Lie alge­bras. One of the reasons for considering these low dimensional Lie alge­bras that they often occur as subalgebras of large Lie algebras


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1455
Author(s):  
Alina Dobrogowska ◽  
Karolina Wojciechowicz

We present a new look at the classification of real low-dimensional Lie algebras based on the notion of a linear bundle of Lie algebras. Belonging to a suitable family of Lie bundles entails the compatibility of the Lie–Poisson structures with the dual spaces of those algebras. This gives compatibility of bi-Hamiltonian structure on the space of upper triangular matrices and with a bundle at the algebra level. We will show that all three-dimensional Lie algebras belong to two of these families and four-dimensional Lie algebras can be divided in three of these families.


2016 ◽  
Vol 13 (07) ◽  
pp. 1650087 ◽  
Author(s):  
Adel Rezaei-Aghdam ◽  
Mehdi Sephid

In this paper, we obtain the classical [Formula: see text]-matrices of real two- and three-dimensional Jacobi–Lie bialgebras. In this way, we classify all non-isomorphic real two- and three-dimensional coboundary Jacobi–Lie bialgebras and their types (triangular and quasi-triangular). Also, we obtain the generalized Sklyanin bracket formula by use of which, we calculate the Jacobi structures on the related Jacobi–Lie groups. Finally, we present a new method for constructing classical integrable systems using coboundary Jacobi–Lie bialgebras.


2017 ◽  
Vol 17 (3) ◽  
Author(s):  
Giovanni Calvaruso ◽  
Antonella Perrone

AbstractWe study left-invariant almost paracontact metric structures on arbitrary three-dimensional Lorentzian Lie groups. We obtain a complete classification and description under a natural assumption, which includes relevant classes as normal and almost para-cosymplectic structures, and we investigate geometric properties of these structures.


The aim of this paper is to describe how the Voronoi cell of a lattice changes as that lattice is continuously varied. The usual treatment is simplified by the introduction of new parameters called the vonorms and conorms of the lattice. The present paper deals with dimensions n ≼ 3; a sequel will treat four-dimensional lattices. An elegant algorithm is given for the Voronoi reduction of a three-dimensional lattice, leading to a new proof of Voronoi’s theorem that every lattice of dimension n ≼ 3 is of the first kind, and of Fedorov’s classification of the three-dimensional lattices into five types. There is a very simple formula for the determinant of a three-dimensional lattice in terms of its conorms.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1354 ◽  
Author(s):  
Hassan Almusawa ◽  
Ryad Ghanam ◽  
Gerard Thompson

In this investigation, we present symmetry algebras of the canonical geodesic equations of the indecomposable solvable Lie groups of dimension five, confined to algebras A 5 , 7 a b c to A 18 a . For each algebra, the related system of geodesics is provided. Moreover, a basis for the associated Lie algebra of the symmetry vector fields, as well as the corresponding nonzero brackets, are constructed and categorized.


2008 ◽  
Vol 10 (02) ◽  
pp. 221-260 ◽  
Author(s):  
CHENGMING BAI

We introduce a notion of left-symmetric bialgebra which is an analogue of the notion of Lie bialgebra. We prove that a left-symmetric bialgebra is equivalent to a symplectic Lie algebra with a decomposition into a direct sum of the underlying vector spaces of two Lagrangian subalgebras. The latter is called a parakähler Lie algebra or a phase space of a Lie algebra in mathematical physics. We introduce and study coboundary left-symmetric bialgebras and our study leads to what we call "S-equation", which is an analogue of the classical Yang–Baxter equation. In a certain sense, the S-equation associated to a left-symmetric algebra reveals the left-symmetry of the products. We show that a symmetric solution of the S-equation gives a parakähler Lie algebra. We also show that such a solution corresponds to the symmetric part of a certain operator called "[Formula: see text]-operator", whereas a skew-symmetric solution of the classical Yang–Baxter equation corresponds to the skew-symmetric part of an [Formula: see text]-operator. Thus a method to construct symmetric solutions of the S-equation (hence parakähler Lie algebras) from [Formula: see text]-operators is provided. Moreover, by comparing left-symmetric bialgebras and Lie bialgebras, we observe that there is a clear analogue between them and, in particular, parakähler Lie groups correspond to Poisson–Lie groups in this sense.


2005 ◽  
Vol 07 (02) ◽  
pp. 145-165 ◽  
Author(s):  
ALICE FIALOWSKI ◽  
MICHAEL PENKAVA

We consider versal deformations of 0|3-dimensional L∞ algebras, also called strongly homotopy Lie algebras, which correspond precisely to ordinary (non-graded) three-dimensional Lie algebras. The classification of such algebras is well-known, although we shall give a derivation of this classification using an approach of treating them as L∞ algebras. Because the symmetric algebra of a three-dimensional odd vector space contains terms only of exterior degree less than or equal to three, the construction of versal deformations can be carried out completely. We give a characterization of the moduli space of Lie algebras using deformation theory as a guide to understanding the picture.


Sign in / Sign up

Export Citation Format

Share Document