NONLINEAR ASYMPTOTICS FOR HYPERBOLIC INTERNAL WAVES OF SMALL WIDTH

2006 ◽  
Vol 03 (02) ◽  
pp. 269-295 ◽  
Author(s):  
OLIVIER GUES ◽  
JEFFREY RAUCH

Semilinear hyperbolic problems with source terms piecewise smooth and discontinuous across characteristic surfaces yield similarly piecewise smooth solutions. If the discontinuous source is replaced with a smooth transition layer, the discontinuity of the solution is replaced by a smooth internal layer. In this paper we describe how the layer structure of the solution can be computed from the layer structure of the source. The key idea is to use a transmission problem strategy for the problem with the smooth internal layer. That leads to an anastz different from the obvious candidates. The obvious candidates lead to overdetermined equations for correctors. With the transmission problem strategy we compute infinitely accurate expansions.

2012 ◽  
Vol 2012 ◽  
pp. 1-30
Author(s):  
Shixiang Ma

We study the viscous limit problem for a general system of conservation laws. We prove that if the solution of the underlying inviscid problem is piecewise smooth with finitely many noninteracting shocks satisfying the entropy condition, then there exist solutions to the corresponding viscous system which converge to the inviscid solutions away from shock discontinuities at a rate of ε1 as the viscosity coefficient ε vanishes.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 921
Author(s):  
Feikai Yang ◽  
Dafang Fu ◽  
Shuang Liu ◽  
Chris Zevenbergen ◽  
Rajendra Prasad Singh

The current study was aimed to investigate the filler layer structure in modified bioretention systems. Three different structural layers in bioretention were proposed to evaluate their hydrologic performance and pollutant removal efficiency under different rainfall intensities. These layers were as follows: all three layers (filter, transition, and drainage layers), without transition layer, and without drainage layer. Synthetic stormwater was used for experimental purpose in current work. Results revealed that compared with “all three layers”, runoff control rate of “without transition layer” and “without drainage layer” was reduced by 0 to 7.4%, 0 to 10.1%, and outflow start time was advanced by 6 to 8 min and 1.5 to 4.5 min, respectively. Moreover, CODcr (chemical oxygen demand), NH4+-N (ammonium nitrogen), TN (total nitrogen) and TP (total phosphorus) removal rates were 86.0%, 85.4%, 71.8%, and 68.0%, respectively. Particle size distribution of the fillers revealed that during operation, particle moved downward were mainly within 0.16–0.63 mm size. Findings showed that transition and drainage layer played an important role in runoff control, and total height of the filler layer should not be less than 800 mm. Filter layer effectively reduce runoff pollution but the thickness of the filter layer should not be less than 500 mm. Whereas, transition layer has the function of preventing the filler loss of the filter layer; therefore, proper measures must be taken into consideration during structural optimization.


Sign in / Sign up

Export Citation Format

Share Document