scholarly journals The Goursat problem at the horizons for the Klein–Gordon equation on the de Sitter–Kerr metric

2021 ◽  
Vol 18 (03) ◽  
pp. 609-652
Author(s):  
Pascal Millet

The main topic of this paper is the Goursat problem at the horizon for the Klein–Gordon equation on the De Sitter–Kerr metric when the angular momentum (per unit of mass) of the black hole is small. Indeed, we solve the Goursat problem for fixed angular momentum [Formula: see text] of the field (with the restriction that [Formula: see text] is not zero in the case of a massless field).

2021 ◽  
Vol 18 (02) ◽  
pp. 293-310
Author(s):  
Nicolas Besset ◽  
Dietrich Häfner

We show the existence of exponentially growing finite energy solutions for the charged Klein–Gordon equation on the De Sitter–Kerr–Newman metric for small charge and mass of the field and small angular momentum of the black hole. The mechanism behind is that the zero resonance that exists for zero charge, mass and angular momentum moves into the upper half plane.


2001 ◽  
Vol 16 (11) ◽  
pp. 719-723 ◽  
Author(s):  
REN ZHAO ◽  
JUNFANG ZHANG ◽  
LICHUN ZHANG

Starting from the Klein–Gordon equation, we calculate the entropy of Schwarzschild–de Sitter black hole in non-thermal-equilibrium by using the improved brick-wall method-membrane model. When taking the proper cutoff in the obtained result, we obtain that both black hole's entropy and cosmic entropy are proportional to the areas of event horizon. We avoid the logarithmic term and stripped term in the original brick-wall method. It offers a new way of studying the entropy of the black hole in non-thermal-equilibrium.


2006 ◽  
Vol 03 (07) ◽  
pp. 1349-1357 ◽  
Author(s):  
V. V. KOZLOV ◽  
I. V. VOLOVICH

The eigenvalue problem for the square integrable solutions is studied usually for elliptic equations. In this paper we consider such a problem for the hyperbolic Klein–Gordon equation on Lorentzian manifolds. The investigation could help to answer the question why elementary particles have a discrete mass spectrum. An infinite family of square integrable solutions for the Klein–Gordon equation on the Friedman type manifolds is constructed. These solutions have a discrete mass spectrum and a finite action. In particular the solutions on de Sitter space are investigated.


2004 ◽  
Vol 13 (03) ◽  
pp. 597-610 ◽  
Author(s):  
ZHONG-QI MA ◽  
SHI-HAI DONG ◽  
XIAO-YAN GU ◽  
JIANG YU ◽  
M. LOZADA-CASSOU

The solutions of the Klein–Gordon equation with a Coulomb plus scalar potential in D dimensions are exactly obtained. The energy E(n,l,D) is analytically presented and the dependence of the energy E(n,l,D) on the dimension D is analyzed in some detail. The positive energy E(n,0,D) first decreases and then increases with increasing dimension D. The positive energy E(n,l D)(l≠0) increases with increasing dimension D. The dependences of the negative energies E(n,0,D) and E(n,l,D)(l≠0) on the dimension D are opposite to those of the corresponding positive energies E(n,0,D) and E(n,l,D)(l≠0). It is found that the energy E(n,0,D) is symmetric with respect to D=2 for D∈(0,4). It is also found that the energy E(n,l,D)(l≠0) is almost independent of the angular momentum quantum number l for large D and is completely independent of the angular momentum quantum number l if the Coulomb potential is equal to the scalar one. The energy E(n,l D) is almost overlapping for large D.


Sign in / Sign up

Export Citation Format

Share Document