A New Stochastic Optimization Approach — Dolphin Swarm Optimization Algorithm

Author(s):  
Wang Yong ◽  
Wang Tao ◽  
Zhang Cheng-Zhi ◽  
Huang Hua-Juan

A novel nature-inspired swarm intelligence (SI) optimization is proposed called dolphin swarm optimization algorithm (DSOA), which is based on mimicking the mechanism of dolphins in detecting, chasing after, and preying on swarms of sardines to perform optimization. In order to test the performance, the DSOA is evaluated against the corresponding results of three existing well-known SI optimization algorithms, namely, particle swarm optimization (PSO), bat algorithm (BA), and artificial bee colony (ABC), in the terms of the ability to find the global optimum of a range of the popular benchmark functions. The experimental results show that the proposed optimization seems superior to the other three algorithms, and the proposed algorithm has the performance of fast convergence rate, and high local optimal avoidance.

2012 ◽  
Vol 182-183 ◽  
pp. 1953-1957
Author(s):  
Zhao Xia Wu ◽  
Shu Qiang Chen ◽  
Jun Wei Wang ◽  
Li Fu Wang

When the parameters were measured by using fiber Bragg grating (FBG) in practice, there were some parameters hard to measure, which would influenced the reflective spectral of FBG severely, and make the characteristic information harder to be extracted. Therefore, particle swarm optimization algorithm was proposed in analyzing the uniform force reflective spectral of FBG. Based on the uniform force sense theory of FBG and particle swarm optimization algorithm, the objective function were established, meanwhile the experiment and simulation were constructed. And the characteristic information in reflective spectrum of FBG was extracted. By using particle swarm optimization algorithm, experimental data showed that particle swarm optimization algorithm used in extracting the characteristic information not only was efficaciously and easily, but also had some advantages, such as high accuracy, stability and fast convergence rate. And it was useful in high precision measurement of FBG sensor.


2018 ◽  
Vol 19 (2) ◽  
pp. 103 ◽  
Author(s):  
Doddy Prayogo ◽  
Richard Antoni Gosno ◽  
Richard Evander ◽  
Sentosa Limanto

Penelitian ini menyelidiki performa dari metode metaheuristik baru bernama symbiotic organisms search (SOS) dalam menentukan tata letak fasilitas proyek konstruksi yang optimal berdasarkan jarak tempuh pekerja. Dua buah studi kasus tata letak fasilitas digunakan untuk menguji akurasi dan konsistensi dari SOS. Sebagai tambahan, tiga metode metaheuristik lainnya, yaitu particle swarm optimization, artificial bee colony, dan teaching–learning-based optimization, digunakan sebagai pembanding terhadap algoritma SOS. Hasil simulasi mengindikasikan bahwa algoritma SOS lebih unggul serta memiliki karakteristik untuk menghasilkan titik konvergen lebih cepat jika dibandingkan dengan metode metaheuristik lainnya dalam proses optimasi tata letak fasilitas proyek konstruksi.


Author(s):  
Prativa Agarwalla ◽  
Sumitra Mukhopadhyay

Pathway information for cancer detection helps to find co-regulated gene groups whose collective expression is strongly associated with cancer development. In this paper, a collaborative multi-swarm binary particle swarm optimization (MS-BPSO) based gene selection technique is proposed that outperforms to identify the pathway marker genes. We have compared our proposed method with various statistical and pathway based gene selection techniques for different popular cancer datasets as well as a detailed comparative study is illustrated using different meta-heuristic algorithms like binary coded particle swarm optimization (BPSO), binary coded differential evolution (BDE), binary coded artificial bee colony (BABC) and genetic algorithm (GA). Experimental results show that the proposed MS-BPSO based method performs significantly better and the improved multi swarm concept generates a good subset of pathway markers which provides more effective insight to the gene-disease association with high accuracy and reliability.


Sign in / Sign up

Export Citation Format

Share Document