COMPOSITION LINEAR CONTROL IN STIRRED TANK CHEMICAL REACTORS

2007 ◽  
Vol 03 (03) ◽  
pp. 385-398 ◽  
Author(s):  
A. REGALADO MÉNDEZ ◽  
J. ÁLVAREZ-RAMÍREZ

This work studies loop control composition in continuous chemical reactors with simple structures, due to its large acceptance in chemical industry. A linear cascade composition control (master/slave) is proposed, designed with basic control structures based on Laplace tools. Two configurations are designed, which were evaluated in a dynamic model of continuous stirred tank. From a stability analysis it is noted that, for such configurations, system assent time is 7 to 8 times reduced if compared to the assent time without loop control. Besides, the system shows a good performance when coming to the asked reference. Implementation of such control configurations can solve the problem of loop control composition.

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 873
Author(s):  
Ricardo Aguilar-López ◽  
Juan Luis Mata-Machuca ◽  
Valeria Godinez-Cantillo

In this manuscript, a two-input two-output (TITO) control strategy for an exothermic continuous chemical reactor is presented. The control tasks of the continuous chemical reactor are related to temperature regulation by a standard proportional-integral (PI) controller. The selected set point increases reactor productivity due to the temperature effect and prevents potential thermal runaway, and the temperature increases until it reaches isothermal operating conditions. Then, an optimal controller is activated to increase the mass reactor productivity. The optimal control strategy is based on a Euler-Lagrange framework, in which the corresponding Lagrangian is based on the model equations of the reactor, and the optimal controller is coupled with an uncertainty estimator to infer the unknown terms required by the proposed controller. As a benchmark, a continuous stirred tank reactor (CSTR) with a Van de Vusse chemical reaction is considered as an application case study. Notably, the proposed methodology is generally applicable to any continuous stirred tank reactor. The results of numerical experiments verify the satisfactory performance of the proposed control strategy.


2016 ◽  
Vol 14 (3) ◽  
pp. 557-561
Author(s):  
Nguyễn Thị Yên ◽  
Kiều Thị Quỳnh Hoa

Lead contaminated wastewater negatively impacts to living organisms as well as humans. In recent years, a highly promising biological process using the anaerobic production of sulfide ions by sulfate-reducing bacteria has presented itself as an alternative option for the removal of lead. This process is based on microbial utilization of electron donors, such as organic compounds (carbon sources), and sulfate as the terminal electron acceptor for sulfide production. The biogenic hydrogen sulfide reacts with dissolved heavy metals to form insoluble metal sulfide precipitates Removal of lead by an enriched consortium of sulfate-reducing bacteria (DM10) was evaluated sulfate reduction, sulfide production and lead precipitation. Four parallel anaerobic continuous stirred tank reactors (CSTR, V = 2L) (referred as R1 - R4) were fed with synthetic wastewater containing Pb2+ in the concentrations of 0, 100, 150 and 200 mg L-1 of lead and operated with a hydraulic retention time of 5 days for 40 days. The loading rates of each metal in R1- R4 were 0, 20, 30 and 40 mg L-1 d-1, respectively. The results showed that there was no inhibition of SRB growth and that lead removal efficiencies of 99-100% for Pb2+ were achieved in R2 (100 mg L-1) and R3 (150 mg L-1) throughout the experiment. For the highest lead concentration of  200 mg L-1, a decrease in efficiency of removal (from 100 to 96%) was observed at the end of the experiment. The obtained result of this study might help for a better control operation and performance improvements of reactors.


Sign in / Sign up

Export Citation Format

Share Document