scholarly journals THE 2-RANKS OF HYPERELLIPTIC CURVES WITH EXTRA AUTOMORPHISMS

2009 ◽  
Vol 05 (05) ◽  
pp. 897-910 ◽  
Author(s):  
DARREN GLASS

This paper examines the relationship between the automorphism group of a hyperelliptic curve defined over an algebraically closed field of characteristic two and the 2-rank of the curve. In particular, we exploit the wild ramification to use the Deuring–Shafarevich formula in order to analyze the ramification of hyperelliptic curves that admit extra automorphisms and use this data to impose restrictions on the genera and 2-ranks of such curves. We also show how some of the techniques and results carry over to the case where our base field is of characteristic p > 2.

2009 ◽  
Vol 05 (06) ◽  
pp. 1103-1116 ◽  
Author(s):  
RACHEL PRIES

Consider the moduli space of smooth curves of genus g and p-rank f defined over an algebraically closed field k of characteristic p. It is an open problem to classify which group schemes occur as the p-torsion of the Jacobians of these curves for f < g - 1. We prove that the generic point of every component of this moduli space has a-number 1 when f = g - 2 and f = g - 3. Likewise, we show that a generic hyperelliptic curve with p-rank g - 2 has a-number 1 when p ≥ 3. We also show that the locus of curves with p-rank g - 2 and a-number 2 is non-empty with codimension 3 in [Formula: see text] when p ≥ 5. We include some other results when f = g - 3. The proofs are by induction on g while fixing g - f. They use computations about certain components of the boundary of [Formula: see text].


2014 ◽  
Vol 13 (05) ◽  
pp. 1350146 ◽  
Author(s):  
MARTIN MYGIND

Working over an algebraically closed field of characteristic p > 3, we calculate the orbit closures in the Witt algebra W under the action of its automorphism group G. We also outline how the same techniques can be used to determine closures of orbits of all heights except p - 1 (in which case we only obtain a conditional statement) in the dual space W* under the induced action of G. As a corollary we prove that the algebra of invariants k[W*]G is trivial.


2011 ◽  
Vol 11 (2) ◽  
pp. 221-271 ◽  
Author(s):  
Alain Genestier ◽  
Sergey Lysenko

AbstractLet k be an algebraically closed field of characteristic two. Let R be the ring of Witt vectors of length two over k. We construct a group stack Ĝ over k, the metaplectic extension of the Greenberg realization of $\operatorname{\mathbb{S}p}_{2n}(R)$. We also construct a geometric analogue of the Weil representation of Ĝ, this is a triangulated category on which Ĝ acts by functors. This triangulated category and the action are geometric in a suitable sense.


Author(s):  
Dmitry Kubrak ◽  
Roman Travkin

Abstract “Even more so is the word ‘crystalline’, a glacial and impersonal concept of his which disdains viewing existence from a single portion of time and space” Eileen Myles, “The Importance of Being Iceland” For a smooth variety $X$ over an algebraically closed field of characteristic $p$ to a differential 1-form $\alpha $ on the Frobenius twist $X^{\textrm{(1)}}$ one can associate an Azumaya algebra ${{\mathcal{D}}}_{X,\alpha }$, defined as a certain central reduction of the algebra ${{\mathcal{D}}}_X$ of “crystalline differential operators” on $X$. For a resolution of singularities $\pi :X\to Y$ of an affine variety $Y$, we study for which $\alpha $ the class $[{{\mathcal{D}}}_{X,\alpha }]$ in the Brauer group $\textrm{Br}(X^{\textrm{(1)}})$ descends to $Y^{\textrm{(1)}}$. In the case when $X$ is symplectic, this question is related to Fedosov quantizations in characteristic $p$ and the construction of noncommutative resolutions of $Y$. We prove that the classes $[{{\mathcal{D}}}_{X,\alpha }]$ descend étale locally for all $\alpha $ if ${{\mathcal{O}}}_Y\widetilde{\rightarrow }\pi _\ast{{\mathcal{O}}}_X$ and $R^{1}\pi _*\mathcal O_X = R^2\pi _*\mathcal O_X =0$. We also define a certain class of resolutions, which we call resolutions with conical slices, and prove that for a general reduction of a resolution with conical slices in characteristic $0$ to an algebraically closed field of characteristic $p$ classes $[{{\mathcal{D}}}_{X,\alpha }]$ descend to $Y^{\textrm{(1)}}$ globally for all $\alpha $. Finally we give some examples; in particular, we show that Slodowy slices, Nakajima quiver varieties, and hypertoric varieties are resolutions with conical slices.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurdagül Anbar ◽  
Burçin Güneş

Abstract We study the automorphisms of a function field of genus g ≥ 2 over an algebraically closed field of characteristic p > 0. More precisely, we show that the order of a nilpotent subgroup G of its automorphism group is bounded by 16 (g – 1) when G is not a p-group. We show that if |G| = 16(g – 1), then g – 1 is a power of 2. Furthermore, we provide an infinite family of function fields attaining the bound.


2018 ◽  
Vol 2019 (18) ◽  
pp. 5811-5853 ◽  
Author(s):  
Simon M Goodwin ◽  
Lewis W Topley

Abstract Let ${\mathbb{k}}$ be an algebraically closed field of characteristic p > 0 and let G be a connected reductive algebraic group over ${\mathbb{k}}$. Under some standard hypothesis on G, we give a direct approach to the finite W-algebra $U(\mathfrak{g},e)$ associated to a nilpotent element $e \in \mathfrak{g} = \textrm{Lie}\ G$. We prove a PBW theorem and deduce a number of consequences, then move on to define and study the p-centre of $U(\mathfrak{g},e)$, which allows us to define reduced finite W-algebras $U_{\eta}(\mathfrak{g},e)$ and we verify that they coincide with those previously appearing in the work of Premet. Finally, we prove a modular version of Skryabin’s equivalence of categories, generalizing recent work of the second author.


1998 ◽  
Vol 63 (2) ◽  
pp. 485-508 ◽  
Author(s):  
Mark J. Debonis ◽  
Ali Nesin

Generalized n-gons are certain geometric structures (incidence geometries) that generalize the concept of projective planes (the nontrivial generalized 3-gons are exactly the projective planes).In a simplified world, every generalized n-gon of finite Morley rank would be an algebraic one, i.e., one of the three families described in [9] for example. To our horror, John Baldwin [2], using methods discovered by Hrushovski [7], constructed ℵ1-categorical projective planes which are not algebraic. The projective planes that Baldwin constructed fail to be algebraic in a dramatic way.Indeed, every algebraic projective plane over an algebraically closed field is Desarguesian [12]. In particular, an algebraically closed field (isomorphic to the base field) can be interpreted in every one of them. However, in the projective planes that Baldwin constructed, one cannot even interpret an infinite group.In this article we show that the same phenomenon occurs for the generalized n-gons if n ≥ 3 is an odd integer. For each such n we construct many nonisomorphic generalized n-gons of finite Morley rank that do not interpret an infinite group. As one may expect, our method is inspired by Hrushovski and Baldwin, and we follow Baldwin's line of approach. Quite often our proofs are a verification of the fact that the proofs of Baldwin [2] for n = 3 carry over to an arbitrary positive odd integer n (which is sometimes far from being obvious). As in [2], we begin by defining a certain collection of finite graphs K* and a binary relation ≤ on these graphs. We show that (K*, ≤) satisfies the amalgamation property.


2013 ◽  
Vol 20 (01) ◽  
pp. 1-46
Author(s):  
Lluis Puig

The weights for a finite group G with respect to a prime number p were introduced by Jon Alperin, in order to formulate his celebrated conjecture affirming that the number of G-conjugacy classes of weights of G coincides with the number of isomorphism classes of simple kG-modules, where k is an algebraically closed field of characteristic p. Thirty years ago, Tetsuro Okuyama already proved that in the class of p-solvable groups this conjecture holds. In this paper, for the p-solvable groups, on the one hand we exhibit a natural bijection — namely compatible with the action of the group of outer automorphisms of G — between the sets of isomorphism classes of simple kG-modules M and of G-conjugacy classes of weights (R,Y), up to the choice of a polarization. On the other hand, we determine the relationship between a multiplicity module of M and Y. In an Appendix, we show that the bijection defined by Gabriel Navarro for the groups of odd order coincides with our bijection for a particular choice of the polarization.


2013 ◽  
Vol 20 (01) ◽  
pp. 95-108 ◽  
Author(s):  
Jingcheng Dong ◽  
Huixiang Chen

Let k be an algebraically closed field of odd characteristic p, and let Dn be the dihedral group of order 2n such that p|2n. Let D(kDn) denote the quantum double of the group algebra kDn. In this paper, we describe the structures of all finite-dimensional indecomposable left D(kDn)-modules, equivalently, of all finite-dimensional indecomposable Yetter-Drinfeld kDn-modules, and classify them.


2021 ◽  
Vol 21 (4) ◽  
pp. 451-461
Author(s):  
Massimo Giulietti ◽  
Motoko Kawakita ◽  
Stefano Lia ◽  
Maria Montanucci

Abstract In 1895 Wiman introduced the Riemann surface 𝒲 of genus 6 over the complex field ℂ defined by the equation X 6+Y 6+ℨ 6+(X 2+Y 2+ℨ 2)(X 4+Y 4+ℨ 4)−12X 2 Y 2 ℨ 2 = 0, and showed that its full automorphism group is isomorphic to the symmetric group S 5. We show that this holds also over every algebraically closed field 𝕂 of characteristic p ≥ 7. For p = 2, 3 the above polynomial is reducible over 𝕂, and for p = 5 the curve 𝒲 is rational and Aut(𝒲) ≅ PGL(2,𝕂). We also show that Wiman’s 𝔽192 -maximal sextic 𝒲 is not Galois covered by the Hermitian curve H19 over the finite field 𝔽192 .


Sign in / Sign up

Export Citation Format

Share Document