scholarly journals Primes in short arithmetic progressions

2015 ◽  
Vol 11 (05) ◽  
pp. 1499-1521 ◽  
Author(s):  
Dimitris Koukoulopoulos

Let x, h and Q be three parameters. We show that, for most moduli q ≤ Q and for most positive real numbers y ≤ x, every reduced arithmetic progression a( mod q) has approximately the expected number of primes p from the interval (y, y + h], provided that h > x1/6+ϵ and Q satisfies appropriate bounds in terms of h and x. Moreover, we prove that, for most moduli q ≤ Q and for most positive real numbers y ≤ x, there is at least one prime p ∈ (y, y + h] lying in every reduced arithmetic progression a( mod q), provided that 1 ≤ Q2 ≤ h/x1/15+ϵ.

2012 ◽  
Vol DMTCS Proceedings vol. AQ,... (Proceedings) ◽  
Author(s):  
Jérémie Du Boisberranger ◽  
Danièle Gardy ◽  
Yann Ponty

International audience We consider the word collector problem, i.e. the expected number of calls to a random weighted generator before all the words of a given length in a language are generated. The originality of this instance of the non-uniform coupon collector lies in the, potentially large, multiplicity of the words/coupons of a given probability/composition. We obtain a general theorem that gives an asymptotic equivalent for the expected waiting time of a general version of the Coupon Collector. This theorem is especially well-suited for classes of coupons featuring high multiplicities. Its application to a given language essentially necessitates knowledge on the number of words of a given composition/probability. We illustrate the application of our theorem, in a step-by-step fashion, on four exemplary languages, whose analyses reveal a large diversity of asymptotic waiting times, generally expressible as $\kappa \cdot m^p \cdot (\log{m})^q \cdot (\log \log{m})^r$, for $m$ the number of words, and $p, q, r$ some positive real numbers.


2018 ◽  
Vol 7 (1) ◽  
pp. 77-83
Author(s):  
Rajendra Prasad Regmi

There are various methods of finding the square roots of positive real number. This paper deals with finding the principle square root of positive real numbers by using Lagrange’s and Newton’s interpolation method. The interpolation method is the process of finding the values of unknown quantity (y) between two known quantities.


1985 ◽  
Vol 50 (1) ◽  
pp. 110-122
Author(s):  
Howard Becker

For any A ⊂ R, the Banach game B(A) is the following infinite game on reals: Players I and II alternately play positive real numbers a1; a2, a3, a4,… such that for n > 1, an < an−1. Player I wins iff ai exists and is in A.This type of game was introduced by Banach in 1935 in the Scottish Book [15], Problem 43. The (rather vague) problem which Banach posed was to characterize those sets A for which I (II) has a winning strategy in B(A). (There are three parts to Problem 43. In the first, Mazur defined a game G**(A) for every set A ⊂ R and conjectured that II has a winning strategy in G**(A) iff A is meager and I has a winning strategy in G**(A) iff A is comeager in some neighborhood; this conjecture was proved by Banach. Presumably Banach had this result in mind when he asked the question about B(A), and hoped for a similar type of characterization.) Incidentally, Problem 43 of the Scottish Book appears to be the first time infinite games of any sort were studied by mathematicians.This paper will not provide the reader with any answer to Banach's question. I know of no nontrivial way to characterize when player I (or II) wins, and I suspect there is none. This paper is concerned with a different (also rather vague) question: For which sets A is the Banach game B(A) determined? To say that B(A) is determined means, of course, that one of the players has a winning strategy for B(A).


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Dağistan Simsek ◽  
Bilal Demir ◽  
Cengiz Cinar

We study the behavior of the solutions of the following system of difference equationsxn+1=max⁡{A/xn,yn/xn},yn+1=max⁡{A/yn,xn/yn}where the constantAand the initial conditions are positive real numbers.


2009 ◽  
Vol 05 (04) ◽  
pp. 625-634
Author(s):  
SERGEI V. KONYAGIN ◽  
MELVYN B. NATHANSON

Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a + im : i ∈ N0}. For positive integers a,b,c,d,m the sum of products set Rm(a)Rm(b) + Rm(c)Rm(d) consists of all integers of the form (a+im) · (b+jm)+(c+km)(d+ℓm) for some i,j,k,ℓ ∈ Z. It is proved that if gcd (a,b,c,d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class Rm(ab+cd), and that the sum of products set Pm(a)Pm(b)+Pm(c)Pm eventually coincides with the infinite arithmetic progression Pm(ab+cd).


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emin Bešo ◽  
Senada Kalabušić ◽  
Naida Mujić ◽  
Esmir Pilav

AbstractWe consider the second-order rational difference equation $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$xn+1=γ+δxnxn−12, where γ, δ are positive real numbers and the initial conditions $x_{-1}$x−1 and $x_{0}$x0 are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.


2014 ◽  
Vol 33 (2) ◽  
pp. 59-67
Author(s):  
Pankaj Kumar ◽  
S. S. Bhatia ◽  
Vijay Kumar

In this paper, we aim to generalize the notion of statistical convergence for double sequences on probabilistic normed spaces with the help of two nondecreasing sequences of positive real numbers $\lambda=(\lambda_{n})$ and $\mu = (\mu_{n})$  such that each tending to zero, also $\lambda_{n+1}\leq \lambda_{n}+1, \lambda_{1}=1,$ and $\mu_{n+1}\leq \mu_{n}+1, \mu_{1}=1.$ We also define generalized statistically Cauchy double sequences on PN space and establish the Cauchy convergence criteria in these spaces.


2017 ◽  
Vol 9 (5) ◽  
pp. 73
Author(s):  
Do Tan Si

We show that a sum of powers on an arithmetic progression is the transform of a monomial by a differential operator and that its generating function is simply related to that of the Bernoulli polynomials from which consequently it may be calculated. Besides, we show that it is obtainable also from the sums of powers of integers, i.e. from the Bernoulli numbers which in turn may be calculated by a simple algorithm.By the way, for didactic purpose, operator calculus is utilized for proving in a concise manner the main properties of the Bernoulli polynomials. 


2013 ◽  
Vol 11 (02) ◽  
pp. 1350010
Author(s):  
HORST ALZER

Let α and β be real numbers. We prove that the functional inequality [Formula: see text] holds for all positive real numbers x and y if and only if [Formula: see text] Here, γ denotes Euler's constant.


2020 ◽  
Vol 126 (3) ◽  
pp. 559-567
Author(s):  
Megumi Kirihata ◽  
Makoto Yamashita

We prove a strengthened form of convexity for operator monotone decreasing positive functions defined on the positive real numbers. This extends Ando and Hiai's work to allow arbitrary positive maps instead of states (or the identity map), and functional calculus by operator monotone functions defined on the positive real numbers instead of the logarithmic function.


Sign in / Sign up

Export Citation Format

Share Document