scholarly journals Multiplicative functions commutable with sums of squares

2018 ◽  
Vol 14 (02) ◽  
pp. 469-478 ◽  
Author(s):  
Poo-Sung Park

Let [Formula: see text] be an integer greater than or equal to [Formula: see text]. We show that if a multiplicative function [Formula: see text] satisfies [Formula: see text] for all positive integers [Formula: see text], then [Formula: see text] is the identity function.

2020 ◽  
Vol 16 (06) ◽  
pp. 1369-1376
Author(s):  
Poo-Sung Park

Let [Formula: see text] be the set of all primes. A function [Formula: see text] is called multiplicative if [Formula: see text] and [Formula: see text] when [Formula: see text]. We show that a multiplicative function [Formula: see text] which satisfies [Formula: see text] satisfies one of the following: (1) [Formula: see text] is the identity function, (2) [Formula: see text] is the constant function with [Formula: see text], (3) [Formula: see text] for [Formula: see text] unless [Formula: see text] is odd and squareful. As a consequence, a multiplicative function which satisfies [Formula: see text] is the identity function.


1996 ◽  
Vol 39 (3) ◽  
pp. 581-588 ◽  
Author(s):  
R. R. Hall

The conjecture in question is that the proportion of the first n positive integers which are quadratic residues of an arbitrary prime p is bounded below by a positive. δ. This is established here as a corollary of a more general result concerning multiplicative functions; the problem of the sharp δ is left open.


1996 ◽  
Vol 19 (2) ◽  
pp. 209-217 ◽  
Author(s):  
Pentti Haukkanen

An arithmetical function is said to be a totient if it is the Dirichlet convolution between a completely multiplicative function and the inverse of a completely multiplicative function. Euler's phi-function is a famous example of a totient. All completely multiplicative functions are also totients. There is a large number of characterizations of completely multiplicative functions in the literature, while characterizations of totients have not been widely studied in the literature. In this paper we present several arithmetical identities serving as characterizations of totients. We also introduce a new concrete example of a totient.


2017 ◽  
Vol 153 (8) ◽  
pp. 1622-1657 ◽  
Author(s):  
Oleksiy Klurman

We give an asymptotic formula for correlations $$\begin{eqnarray}\mathop{\sum }_{n\leqslant x}f_{1}(P_{1}(n))f_{2}(P_{2}(n))\cdots f_{m}(P_{m}(n)),\end{eqnarray}$$ where $f,\ldots ,f_{m}$ are bounded ‘pretentious’ multiplicative functions, under certain natural hypotheses. We then deduce several desirable consequences. First, we characterize all multiplicative functions $f:\mathbb{N}\rightarrow \{-1,+1\}$ with bounded partial sums. This answers a question of Erdős from $1957$ in the form conjectured by Tao. Second, we show that if the average of the first divided difference of the multiplicative function is zero, then either $f(n)=n^{s}$ for $\operatorname{Re}(s)<1$ or $|f(n)|$ is small on average. This settles an old conjecture of Kátai. Third, we apply our theorem to count the number of representations of $n=a+b$, where $a,b$ belong to some multiplicative subsets of $\mathbb{N}$. This gives a new ‘circle method-free’ proof of a result of Brüdern.


1923 ◽  
Vol 16 (5) ◽  
pp. 257-265
Author(s):  
R. D. Carmichael

The larger portion of the theorems in Diophantine Analysis probably existed first as empirical or conjectural theorems. Many of them passed to the state of proved theorems before they left the hands of those who discovered them; many others were proved in the same generation in which they were made public; not a few required a longer period for their proof; and several remain today as a silent challenge to the skill and power of contemporary mathematicians. The remarks may be illustrated with a brief account of the history of the problem of representing numbers (that is, positive integers) as sums of squares of integers and of higher powers. Anyone interested in further details will find them in the comprehensive account of Diophantine Analysis which fills volume II (xxvi + 803 pages) of L. E. Dickson's “History of the Theory of Numbers,” Carnegie Institution, Washington, D. C. We shall make free use of the material summarized in a masterly way in this volume.


2017 ◽  
Vol 97 (1) ◽  
pp. 15-25 ◽  
Author(s):  
ZONGBING LIN ◽  
SIAO HONG

Let $n\geq 1$ be an integer and $f$ be an arithmetical function. Let $S=\{x_{1},\ldots ,x_{n}\}$ be a set of $n$ distinct positive integers with the property that $d\in S$ if $x\in S$ and $d|x$. Then $\min (S)=1$. Let $(f(S))=(f(\gcd (x_{i},x_{j})))$ and $(f[S])=(f(\text{lcm}(x_{i},x_{j})))$ denote the $n\times n$ matrices whose $(i,j)$-entries are $f$ evaluated at the greatest common divisor of $x_{i}$ and $x_{j}$ and the least common multiple of $x_{i}$ and $x_{j}$, respectively. In 1875, Smith [‘On the value of a certain arithmetical determinant’, Proc. Lond. Math. Soc. 7 (1875–76), 208–212] showed that $\det (f(S))=\prod _{l=1}^{n}(f\ast \unicode[STIX]{x1D707})(x_{l})$, where $f\ast \unicode[STIX]{x1D707}$ is the Dirichlet convolution of $f$ and the Möbius function $\unicode[STIX]{x1D707}$. Bourque and Ligh [‘Matrices associated with classes of multiplicative functions’, Linear Algebra Appl. 216 (1995), 267–275] computed the determinant $\det (f[S])$ if $f$ is multiplicative and, Hong, Hu and Lin [‘On a certain arithmetical determinant’, Acta Math. Hungar. 150 (2016), 372–382] gave formulae for the determinants $\det (f(S\setminus \{1\}))$ and $\det (f[S\setminus \{1\}])$. In this paper, we evaluate the determinant $\det (f(S\setminus \{x_{t}\}))$ for any integer $t$ with $1\leq t\leq n$ and also the determinant $\det (f[S\setminus \{x_{t}\}])$ if $f$ is multiplicative.


Author(s):  
SU-PING CUI ◽  
NANCY S. S. GU

For positive integers $n$ and $k$ , let $r_{k}(n)$ denote the number of representations of $n$ as a sum of $k$ squares, where representations with different orders and different signs are counted as distinct. For a given positive integer $m$ , by means of some properties of binomial coefficients, we derive some infinite families of congruences for $r_{k}(n)$ modulo $2^{m}$ . Furthermore, in view of these arithmetic properties of $r_{k}(n)$ , we establish many infinite families of congruences for the overpartition function and the overpartition pair function.


2018 ◽  
Vol 6 ◽  
Author(s):  
ANDREW GRANVILLE ◽  
XUANCHENG SHAO

Let $f$ and $g$ be 1-bounded multiplicative functions for which $f\ast g=1_{.=1}$. The Bombieri–Vinogradov theorem holds for both $f$ and $g$ if and only if the Siegel–Walfisz criterion holds for both $f$ and $g$, and the Bombieri–Vinogradov theorem holds for $f$ restricted to the primes.


1975 ◽  
Vol 20 (3) ◽  
pp. 348-358 ◽  
Author(s):  
T. B. Carroll ◽  
A. A. Gioia

An arithmetic function f is said to be multiplicative if f(1) = 1 and f(mn) = f(m)f(n) whenever (m, n) = 1, where (m, n) denotes as usual the greatest common divisor of m and n. Furthermore an arithmetic function is said to be linear (or completely multiplicative) if f(1) = 1 and f(mn) = f(m)f(n) for all positive integers m and n.The Dirichlet convolution of two arithmetic functions f and g is defined by for all n∈Z+. Recall that the set of all multiplicative functions, denoted by M, with this operation is an abelian group.


2020 ◽  
Vol 8 ◽  
Author(s):  
ADAM J. HARPER

We determine the order of magnitude of $\mathbb{E}|\sum _{n\leqslant x}f(n)|^{2q}$ , where $f(n)$ is a Steinhaus or Rademacher random multiplicative function, and $0\leqslant q\leqslant 1$ . In the Steinhaus case, this is equivalent to determining the order of $\lim _{T\rightarrow \infty }\frac{1}{T}\int _{0}^{T}|\sum _{n\leqslant x}n^{-it}|^{2q}\,dt$ . In particular, we find that $\mathbb{E}|\sum _{n\leqslant x}f(n)|\asymp \sqrt{x}/(\log \log x)^{1/4}$ . This proves a conjecture of Helson that one should have better than squareroot cancellation in the first moment and disproves counter-conjectures of various other authors. We deduce some consequences for the distribution and large deviations of $\sum _{n\leqslant x}f(n)$ . The proofs develop a connection between $\mathbb{E}|\sum _{n\leqslant x}f(n)|^{2q}$ and the $q$ th moment of a critical, approximately Gaussian, multiplicative chaos and then establish the required estimates for that. We include some general introductory discussion about critical multiplicative chaos to help readers unfamiliar with that area.


Sign in / Sign up

Export Citation Format

Share Document