pair function
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Mathieu Beau ◽  
Adolfo del Campo

We find the complete family of many-body quantum Hamiltonians with ground-state of Jastrow form involving the pairwise product of a pair function in an arbitrary spatial dimension. The parent Hamiltonian generally includes a two-body pairwise potential as well as a three-body potential. We thus generalize the Calogero-Marchioro construction for the three-dimensional case to an arbitrary spatial dimension. The resulting family of models is further extended to include a one-body term representing an external potential, which gives rise to an additional long-range two-body interaction. Using this framework, we provide the generalization to an arbitrary spatial dimension of well-known systems such as the Calogero-Sutherland and Calogero-Moser models. We also introduce novel models, generalizing the McGuire many-body quantum bright soliton solution to higher dimensions and considering ground-states which involve e.g., polynomial, Gaussian, exponential, and hyperbolic pair functions. Finally, we show how the pair function can be reverse-engineered to construct models with a given potential, such as a pair-wise Yukawa potential, and to identify models governed exclusively by three-body interactions.


Author(s):  
Oona Rainio

AbstractThe point pair function $$p_G$$ p G defined in a domain $$G\subsetneq {\mathbb {R}}^n$$ G ⊊ R n is shown to be a quasi-metric, and its other properties are studied. For a convex domain $$G\subsetneq {\mathbb {R}}^n$$ G ⊊ R n , a new intrinsic quasi-metric called the function $$w_G$$ w G is introduced. Several sharp results are established for these two quasi-metrics, and their connection to the triangular ratio metric is studied.


Author(s):  
SU-PING CUI ◽  
NANCY S. S. GU

For positive integers $n$ and $k$ , let $r_{k}(n)$ denote the number of representations of $n$ as a sum of $k$ squares, where representations with different orders and different signs are counted as distinct. For a given positive integer $m$ , by means of some properties of binomial coefficients, we derive some infinite families of congruences for $r_{k}(n)$ modulo $2^{m}$ . Furthermore, in view of these arithmetic properties of $r_{k}(n)$ , we establish many infinite families of congruences for the overpartition function and the overpartition pair function.


2014 ◽  
Vol 10 (06) ◽  
pp. 1583-1594 ◽  
Author(s):  
Shi-Chao Chen

For a positive integer n, let ped (n) be the number of partitions of n where the even parts are distinct, and [Formula: see text] be the number of overpartitions of n into odd parts. Moreover, let Q(n) denote the number of the partition pairs of n into two colors (say, red and blue), where the parts colored red satisfy restrictions of partitions counted by ped (n), while the parts colored blue satisfy restrictions of partitions counted by [Formula: see text]. We establish several congruences for Q(n). We also obtain an asymptotic formula for Q(n).


1996 ◽  
Vol 74 (6) ◽  
pp. 1106-1115
Author(s):  
Akitomo Tachibana

By projecting the BCS ground state of superconducting electron condensate on the N-electron Hilbert space, a real-space equation-of-motion is obtained for the electron pair function [Formula: see text] at absolute zero temperature (T = 0):[Formula: see text]where ρN−2 denotes electron density of the (N – 2)-electron condensate given as[Formula: see text]Since the exchange-correlation potential is given as an explicit functional of electron density, this equation represents the fundamental working equation for the new density functional theory of superconductivity. The 2nd-order density matrix ΓN(1, 2|1′, 2′) projected on the N-electron Hilbert space satisfies[Formula: see text]so that asymptotically[Formula: see text]where [Formula: see text] denotes the center-of-mass coordinate of electrons e1and e2; this is considered the ODLRO (off-diagonal long-range order) at T = 0 projected on the N-electron Hilbert space. A new attractive potential analysis for the two-electron scattering problem (A. Tachibana, Bull. Chem. Soc. Jpn. 66, 3319 (1993); Int. J. Quantum Chem. 49, 625 (1994)) is straightforwardly applicable to the present equation-of-motion, and we can also plug in the vibronic interaction for the enhancement of the attractive force. Our approach is purely mathematical and basic, restricted merely at T = 0, but proves to serve as a real-space analysis of the pair function itself. Key words: equation-of-motion of electron pair, BCS theory, superconductivity, electron pair function, density functional theory.


Sign in / Sign up

Export Citation Format

Share Document