Effect of Cu2O Content in Electrodeposited CuOx Film on Perovskite Solar Cells

NANO ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. 1950126 ◽  
Author(s):  
Xu Miao ◽  
Shuo Wang ◽  
Wenhai Sun ◽  
Yu Zhu ◽  
Chen Du ◽  
...  

It is well known that the different proportions of CuO and Cu2O in CuOx hole transfer materials have a great influence on the hole transport property as well as the device performances of perovskite solar cells (PSCs). In this paper, we changed the content of Cu2O in the film by controlling the deposition voltage during electrodeposition, and the effects of different contents of Cu2O in the films on the device were investigated for the first time. It was found that the content of Cu2O in the film reached the highest point with the deposition voltage 0.5[Formula: see text]V, such films have the highest transmittance and carrier mobility. After assembling the device, the power conversion efficiency (PCE) of the champion device reached 13.48% under a one-sun AM 1.5[Formula: see text]G (100[Formula: see text]mW/cm[Formula: see text] illumination. Furthermore, the unpackaged device based on CuOx still retained over 75% PCE after being placed in the ambient condition (30–40% humidity, 20–30[Formula: see text] for 500[Formula: see text]h.

2017 ◽  
Vol 27 (2) ◽  
pp. 121
Author(s):  
Nguyen Tran Thuat ◽  
Bui Bao Thoa ◽  
Nguyen Bao Tran ◽  
Nguyen Minh Tu ◽  
Nguyen Ngoc Minh ◽  
...  

Organometal halide perovskite materials have shown high potential as light absorbers for photovoltaic applications. In this work, perovskite planar solar cells were fabricated on corning substrates with the structure as follows: the first layer made of tantalum-doped tin oxide as transparent contact material, followed by sputtering niobium-doped titanium oxide as the compact electron transport layer; covered with perovskite CH3NH3PbI3 as the light harvester by combination between spin-coating and dipping methods; CuSCN was evaporated as the hole transport layer; the final thin Al/Ag electrodes were deposited. This configuration is shortly described as Al/TTO/NTO/CH3NH3PbI3/CuSCN/Ag. Such heterojunctions are expected to be suitable for the development of efficient hybrid solar cells. The fabricated cells were measured under the air mass 1.5 illumination condition, showed the rectification effect and exhibited a power conversion efficiency of 0.007%, with a open circuit voltage of 53.2 mV, a short circuit current of 0.36 mA/cm2, and a form factor of 37%. The power conversion efficiency will be further optimized in near future.


2018 ◽  
Vol 42 (19) ◽  
pp. 16075-16082 ◽  
Author(s):  
Anil Kanwat ◽  
V. Sandhya Rani ◽  
Jin Jang

Poly(3,4-thylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS, is a popular and cost effective conducting polymer for electrodes that can also be used as a hole transport layer (HTL) in optoelectronics.


2019 ◽  
Vol 12 (12) ◽  
pp. 3502-3507 ◽  
Author(s):  
Yang Cao ◽  
Yunlong Li ◽  
Thomas Morrissey ◽  
Brian Lam ◽  
Brian O. Patrick ◽  
...  

Organic molecular hole-transport materials (HTMs) are appealing for the scalable manufacture of perovskite solar cells (PSCs) because they are easier to reproducibly prepare in high purity than polymeric and inorganic HTMs.


2019 ◽  
Vol 55 (37) ◽  
pp. 5343-5346 ◽  
Author(s):  
Mustafa Haider ◽  
Chao Zhen ◽  
Tingting Wu ◽  
Jinbo Wu ◽  
Chunxu Jia ◽  
...  

Nickel phthalocyanine as a hole transporting material in inverted planar perovskite solar cells leads to a power conversion efficiency of 14.3%.


2019 ◽  
Vol 7 (16) ◽  
pp. 9510-9516 ◽  
Author(s):  
Xingdong Ding ◽  
Cheng Chen ◽  
Linghao Sun ◽  
Hongping Li ◽  
Hong Chen ◽  
...  

Two novel highly efficient and low-cost phenothiazine 5,5-dioxide core building block based hole transport materials are reported, achieving a power conversion efficiency as high as 20.2%.


2021 ◽  
Author(s):  
Ying Shen ◽  
Kaimo Deng ◽  
Qinghua Chen ◽  
Gui Gao ◽  
liang li

Abstract State-of-art perovskite solar cells exhibit comparable power conversion efficiency to silicon photovoltaics. However, the device stability remains a major obstacle that restricts widespread application. Doping hole transport layer induced hygroscopicity, ion diffusion, and use of polar solvent are detrimental factors for performance degradation of perovskite solar cells. Here, we report phase transfer catalyzed LiTFSI doping in Spiro-OMeTAD to address these negative impacts. 12-crown-4 as an efficient phase transfer catalyst promotes the dissolution of LiTFSI without requiring acetonitrile. Crowning Li+ ions by forming more stable and less diffusive crown ether-Li+ complexes retards the generation of hygroscopic lithium oxides and mitigates Li+ ion migration. Optimized solar cells deliver enhanced power conversion efficiency and significantly improved stability under humid and thermal conditions compared with the control device. This method can also be applied to dope π-conjugated polymer. Our findings provide a facile avenue to improve the long-term stability of perovskite solar cells.


2019 ◽  
Vol 7 (26) ◽  
pp. 15476-15490 ◽  
Author(s):  
Haining Chen ◽  
Shihe Yang

Perovskite solar cells (PSCs) have garnered great attention from the scientific community due to their high power conversion efficiency (PCE) achieved via low-cost and solution-processed fabrication techniques.


Sign in / Sign up

Export Citation Format

Share Document