poly styrene sulfonate
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 93)

H-INDEX

40
(FIVE YEARS 6)

Author(s):  
Yan Wang ◽  
Dongyu Zhang ◽  
Qiang Gao

Abstract Flexible organic light-emitting diodes (OLEDs) are expected to have excellent device performance and mechanical robustness in many areas, such as wearable electronics and display devices. For the traditional materials of OLED anode, ITO is undoubtedly the most mature transparent conductive electrode available. However, the brittle and rigid nature of ITO severely limit the development of flexible OLED. In this work, a solution blending film consisting of poly (3,4 ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) and poly (ethylene oxide) (PEO) was used as a hybrid hole injection layer, where PEO polymer in the composite films can greatly improve the bending resistance of device. The printed flexible OLEDs doped with PEO exhibit impressive mechanical durability, maintaining 80.4% of its maximum external quantum efficiency after 1000 bends at a radius of curvature of 10 mm, compared to 46.3% for the counterpart without PEO doping.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012026
Author(s):  
R. S. Sachit

Abstract In recent years, based on organic–inorganic hybrid solar cells the p-type conducting polymer poly (3,4-ethylenedioxythiophene): poly styrene sulfonate (PEDOT: PSS) and n-type silicon (Si) have attracted a lot of attention. We describe an efficient hybrid solar cell based on PEDOT from this perspective: The simplest and most cost-effective method is to use PSS and a planar Si substrate (1 0 0) fabrication method effective techniques for experimentation Drop casting was used to construct PSS at temperatures, solar cells based on a heterojunction between crystalline silicon and the organic polymer PEDOT: below 100 degrees Celsius. The Si/PEDOT interface prevents electrons from migrating to the anode in n-type silicon and serves diffused p-n junctions as a low-temperature alternative The devices take the consequence of silicon’s absorption and transfer of light capabilities while combining them with organics’ ease of manufacture. PEDOT: PSS and PEDOT: PSS interface properties hermetic Psi were studied. The structural, optical and morphological properties in addition to electrical PSS is a property of PEDOT. were studied, the effectiveness of The flawlessly matching contact between the PEDOT: PSS film and the tight silicon can be attributed to conversion. Obtaining Silver pave efficiency is a glowing future approach in order to attain maximum efficiency, low-cost solar cells.


2021 ◽  
Author(s):  
Matteo Sanviti ◽  
Angel Alegria ◽  
Daniel E Martínez-Tong

Electrically conducting nanospheres of poly-(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with tailored size were prepared by a solvent displacement technique. To fabricate the nanostructures, dried PEDOT:PSS was dissolved in ethylene glycol (EG) and the solution was precipitated in deionized water. The proposed fabrication route allowed to obtain a water-based dispersion of PEDOT:PSS nanospheres with good optical properties. To determine the physical properties of the nanospheres, we followed a nanoscale approach, using Atomic Force Microscopy. Our nanoscale mechanical and electrical investigations showed that the nanospheres preserved good physical properties, compared to the commercial product. Moreover, the local studies indicated that the confinement imposed by the spherical shape and the treatment with EG lead to a different arrangement of the PSS and PEDOT phases, responsible for the good electrical conductivity of the nanostructures.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3856
Author(s):  
Sujin Cha ◽  
Byeolyi Choi ◽  
Eugene Lee ◽  
Gilsoo Cho

There is an increased need for research on flexible transparent electrodes (FTEs) because they are critical to next-generation electronic devices, such as wearable computers. In this study, highly conductive transparent conducting electrodes, based on polyvinylidene fluoride (PVDF) nanofiber webs treated with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and silver nanowires (AgNWs), were successfully fabricated. Transparent conducting electrodes (TCEs) were obtained by a brush-painting process using different weight ratios of a AgNWs to PEDOT:PSS solution, and the surface, electrical, optical, and chemical properties, as well as the tensile strength of the samples, were determined. It was found that the electrical conductivity of the samples improved as the AgNW content increased, but the light transmittance decreased. In this work, there was a slight decrease in the optical properties and a considerable increase in the electrical properties due to the hybridization of AgNWs and PEDOT:PSS, compared to using only PEDOT:PSS. When considering both transparency and electrical conductivity, which are essential parameters of TCEs, sample PA2, which was treated by mixing AgNWs and PEDOT:PSS/dimethyl sulfoxide (DMSO) in a ratio of 1:5 (16.67 wt% of AgNWs), was found to be the best sample, with a sheet resistance of 905 Ω/cm2 and light transmittance of 79%.


2021 ◽  
Author(s):  
Henrik Staaf ◽  
Anurak Sawatdee ◽  
Cristina Rusu ◽  
David Nilsson ◽  
Philipp Schäffner ◽  
...  

Abstract Magnetoelectric (magnetic/piezoelectric) heterostructures bring new functionalities to develop novel transducer devices such as (wireless) sensors or energy harvesters and thus have been attracting research interest in the last years. We have studied the magnetoelectric coupling between Metglas films (2826MB) and poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) in a laminate structure. The metallic Metglas film itself served as bottom electrode and as top electrode we used an electrically conductive polymer, poly(3,4-ethylene-dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS). Besides a direct electrical wiring via a graphite ink, a novel contactless readout method is presented using a capacitive coupling between the PEDOT: PSS layer and an electrode not in contact with the PEDOT:PSS layer. From the experimental result we determined a magnetoelectric coupling of 1445 V/(cm×Oe) at the magnetoelastic resonance of the structure, which is among the highest reported values for laminate structures of a magnetostrictive and a piezoelectric polymer layer. With the noncontact readout method, a magnetoelectric coupling of about 950 V/(cm×Oe) could be achieved, which surpasses previously reported values for the case of direct sample contacting. 2D laser Doppler vibrometer measurements in combination with FE simulations were applied to reveal the complex vibration pattern resulting in the strong resonant response.


2021 ◽  
Vol 19 (8) ◽  
pp. 77-83
Author(s):  
Baraa Abd Alreda ◽  
Shaymaa Hadi Al-Rubaye

A two-step procedure is used to create a novel ternary composite NiCo2O4 hexagonalnanoplatesarray/ reducedgrapheneoxide/poly(3,4ethylenedioxythiophene): poly (styrene-sulfonate) (NiCo2O4-rGO/PEDOT:PSS). It was tested to see if it might be used in super capacitor electrode materials. According to electrochemical testing, the NiCo2O4-rGO-PEDOT. PSS materials has a great exact capacitance of 1115 Fg.1 on a current compactness of 2 Ag-1, decent rate ability, and excellent cycle stability, with capacitance retention of 88 percent after 10000 cycles. As a consequence, this ternary composite may find use in a variety of energy storage electrodes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2067
Author(s):  
Ying Tian ◽  
Tao Wang ◽  
Qingxia Zhu ◽  
Xingcai Zhang ◽  
Anita Sagadevan Ethiraj ◽  
...  

Improved OLED systems have great potential for next-generation display applications. Carbon nanotubes (CNTs) and the conductive polymers poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) have attracted great interest for advanced applications, such as optoelectronic products. In this paper, the simultaneous enhancement of the conductivity, roughness, and adhesion properties of transparent conductive films with PEDOT: PSS/CNTs is reported. These films prepared by a simple spin-coating process were successfully used to produce high-performance organic light-emitting diodes (OLEDs) with an improved lifetime. Addition of PEDOT: PSS lowered the film sheet resistance and CNTs helped to enhance the stability and maintain the lifetime of the OLEDs. In addition, treatment with methanol and nitric acid changed the morphology of the polymer film, which led to greatly reduced sheet resistance, enhanced substrate adhesion, and reduced film roughness. The best performance of the film (PEDOT: PSS: CNT = 110: 1, W/W) was 100.34 Ω/sq.@ 90.1 T%. High transmittance, low sheet resistance, excellent adhesion, and low roughness (3.11 nm) were achieved synchronously. The fabricated OLED demonstrated a low minimum operating voltage (3 V) and could endure high voltage (20 V), at which its luminance reached 2973 cd/m2. Thus, the incorporation of CNTs within PEDOT: PSS electrodes has great potential for the improvement of the performance of OLED devices.


Sign in / Sign up

Export Citation Format

Share Document