TURING PATTERNS OF A PREDATOR–PREY MODEL WITH A MODIFIED LESLIE–GOWER TERM AND CROSS-DIFFUSIONS

2012 ◽  
Vol 05 (06) ◽  
pp. 1250060 ◽  
Author(s):  
GUANG-PING HU ◽  
XIAO-LING LI

In this paper, a strongly coupled diffusive predator–prey system with a modified Leslie–Gower term is considered. We will show that under certain hypotheses, even though the unique positive equilibrium is asymptotically stable for the dynamics with diffusion, Turing instability can produce due to the presence of the cross-diffusion. In particular, we establish the existence of non-constant positive steady states of this system. The results indicate that cross-diffusion can create stationary patterns.

2012 ◽  
Vol 26 (31) ◽  
pp. 1250193 ◽  
Author(s):  
AN-WEI LI ◽  
ZHEN JIN ◽  
LI LI ◽  
JIAN-ZHONG WANG

In this paper, we presented a predator–prey model with self diffusion as well as cross diffusion. By using theory on linear stability, we obtain the conditions on Turing instability. The results of numerical simulations reveal that oscillating Turing patterns with hexagons arise in the system. And the values of the parameters we choose for simulations are outside of the Turing domain of the no cross diffusion system. Moreover, we show that cross diffusion has an effect on the persistence of the population, i.e., it causes the population to run a risk of extinction. Particularly, our results show that, without interaction with either a Hopf or a wave instability, the Turing instability together with cross diffusion in a predator–prey model can give rise to spatiotemporally oscillating solutions, which well enrich the finding of pattern formation in ecology.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hongwei Yin ◽  
Xiaoyong Xiao ◽  
Xiaoqing Wen

For a predator-prey system, cross-diffusion has been confirmed to emerge Turing patterns. However, in the real world, the tendency for prey and predators moving along the direction of lower density of their own species, called self-diffusion, should be considered. For this, we investigate Turing instability for a predator-prey system with nonlinear diffusion terms including the normal diffusion, cross-diffusion, and self-diffusion. A sufficient condition of Turing instability for this system is obtained by analyzing the linear stability of spatial homogeneous equilibrium state of this model. A series of numerical simulations reveal Turing parameter regions of the interaction of diffusion parameters. According to these regions, we further demonstrate dispersion relations and spatial patterns. Our results indicate that self-diffusion plays an important role in the spatial patterns.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Yang

The spatiotemporal dynamics of a diffusive ratio-dependent Holling-Tanner predator-prey model with Smith growth subject to zero-flux boundary condition are investigated analytically and numerically. The asymptotic stability of the positive equilibrium and the existence of Hopf bifurcation around the positive equilibrium are shown; the conditions of Turing instability are obtained. And with the help of numerical simulations, it is found that the model exhibits complex pattern replication: stripes, spots-stripes mixtures, and spots Turing patterns.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoqin Wang ◽  
Yongli Cai ◽  
Huihai Ma

The reaction-diffusion Holling-Tanner prey-predator model considering the Allee effect on predator, under zero-flux boundary conditions, is discussed. Some properties of the solutions, such as dissipation and persistence, are obtained. Local and global stability of the positive equilibrium and Turing instability are studied. With the help of the numerical simulations, the rich Turing patterns, including holes, stripes, and spots patterns, are obtained.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250016 ◽  
Author(s):  
JIA LIU ◽  
HUA ZHOU ◽  
LAI ZHANG

In this paper, we consider a sex-structured predator–prey model with strongly coupled nonlinear reaction diffusion. Using the Lyapunov functional and Leray–Schauder degree theory, the existence and stability of both homogenous and heterogenous steady-states are investigated. Our results demonstrate that the unique homogenous steady-state is locally asymptotically stable for the associated ODE system and PDE system with self-diffusion. With the presence of the cross-diffusion, the homogeneous equilibrium is destabilized, and a heterogenous steady-state emerges as a consequence. In addition, the conditions guaranteeing the emergence of Turing patterns are derived.


2020 ◽  
Vol 30 (03) ◽  
pp. 2050041
Author(s):  
Jia-Fang Zhang ◽  
Hong-Bo Shi ◽  
Anotida Madzvamuse

In this paper, we study a nonlinear coupled predator–prey diffusion system which widely exists in ecosystem. It is found that the self-diffusion and cross-diffusion do not change the stability of the semi-equilibrium point of the corresponding predator–prey system. However, the two kinds of diffusion play an important role on the positive equilibrium, in virtue of which Turing instability of the corresponding diffusion system either continues to exist or disappears and becomes stable. On the stationary patterns of the nonlinear coupled system, we find some interesting results which differ from the phenomenon found in corresponding diffusion system. Strong cross-diffusion can make the corresponding system generate stationary patterns. Finally, numerical simulation is also done to verify the existence of the effects of self-diffusion and cross-diffusion.


2020 ◽  
Vol 30 (08) ◽  
pp. 2030020 ◽  
Author(s):  
Guangping Hu ◽  
Zhaosheng Feng

We are concerned with the Turing instability and pattern caused by cross-diffusion in a strongly coupled spatial predator–prey system. We explore how cross-diffusion destabilizes the spatially uniform steady state which is stable in reaction–diffusion systems, and explicitly describe the Turing space under certain conditions. Particularly, when the parameter values are taken in the Turing–Hopf domain, in which the spatiotemporal dynamical behavior is influenced by both Hopf and Turing instabilities, we investigate the formation of all possible patterns, including non-Turing structures such as wave pattern, competing dynamics as well as stationary Turing pattern. Furthermore, numerical simulations are illustrated to verify our theoretical findings.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Shengmao Fu ◽  
Lina Zhang

In this paper, we consider a cross-diffusion predator-prey model with sex structure. We prove that cross-diffusion can destabilize a uniform positive equilibrium which is stable for the ODE system and for the weakly coupled reaction-diffusion system. As a result, we find that stationary patterns arise solely from the effect of cross-diffusion.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Tousheng Huang ◽  
Huayong Zhang ◽  
Xuebing Cong ◽  
Ge Pan ◽  
Xiumin Zhang ◽  
...  

The topic of utilizing coupled map lattice to investigate complex spatiotemporal dynamics has attracted a lot of interest. For exploring the spatiotemporal complexity of a predator-prey system with migration and diffusion, a new three-chain coupled map lattice model is developed in this research. Based on Turing instability analysis, pattern formation conditions for the predator-prey system are derived. Via numerical simulation, rich Turing patterns are found with subtle self-organized structures under diffusion-driven and migration-driven mechanisms. With the variation of migration rates, the predator-prey system exhibits a gradual dynamical transition from diffusion-driven patterns to migration-driven patterns. Moreover, new results, the self-organization of non-Turing patterns, are also revealed. We find that even in the cases where the nonspatial predator-prey system reaches collapse, the migration can still drive pattern self-organization. These non-Turing patterns suggest many new possible ways for the coexistence of predator and prey in space, under the effects of migration and diffusion.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xinze Lian ◽  
Shuling Yan ◽  
Hailing Wang

We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.


Sign in / Sign up

Export Citation Format

Share Document