Analysis of a delayed diffusive model with Beddington–DeAngelis functional response

2019 ◽  
Vol 12 (04) ◽  
pp. 1950047 ◽  
Author(s):  
Xin-You Meng ◽  
Jiao-Guo Wang

In this paper, a delayed diffusive phytoplankton-zooplankton model with Beddington–DeAngelis functional response and toxins is investigated. Existence of equilibria of the system are solved. The global asymptotic stability of the zooplankton-free equilibrium is obtained. The local stability of the coexistent equilibrium and existence of Hopf bifurcation are discussed. In addition, the properties of the Hopf bifurcation are studied based on the center manifold and normal form theory for partial differential equations. Finally, some numerical simulations are also carried out to confirm our theoretical analysis.

Author(s):  
Kejun Zhuang

The paper mainly focuses on a novel hyperchaotic system. The local stability of equilibrium is analyzed and existence of Hopf bifurcation is established. Moreover, formulas for determining the stability and direction of bifurcating periodic solutions are derived by center manifold theorem and normal form theory. Finally, numerical simulation is given to illustrate the theoretical analysis.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Zizhen Zhang ◽  
Yougang Wang ◽  
Massimiliano Ferrara

A delayed computer virus model with antidote in vulnerable system is investigated. Local stability of the endemic equilibrium and existence of Hopf bifurcation are discussed by analyzing the associated characteristic equation. Further, direction of the Hopf bifurcation and stability of the bifurcating periodic solutions are investigated by using the normal form theory and the center manifold theorem. Finally, numerical simulations are presented to show consistency with the obtained results.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zizhen Zhang ◽  
Ruibin Wei ◽  
Wanjun Xia

AbstractIn this paper, we are concerned with a delayed smoking model in which the population is divided into five classes. Sufficient conditions guaranteeing the local stability and existence of Hopf bifurcation for the model are established by taking the time delay as a bifurcation parameter and employing the Routh–Hurwitz criteria. Furthermore, direction and stability of the Hopf bifurcation are investigated by applying the center manifold theorem and normal form theory. Finally, computer simulations are implemented to support the analytic results and to analyze the effects of some parameters on the dynamical behavior of the model.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Xuhui Li

A competitive model of market structure with consumptive delays is considered. The local stability of the positive equilibrium and the existence of local Hopf bifurcation are investigated by analyzing the distribution of the roots of the associated characteristic equation. The explicit formulas determining the stability and other properties of bifurcating periodic solutions are derived by using normal form theory and center manifold argument. Finally, numerical simulations are given to support the analytical results.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Xin-You Meng ◽  
Li Xiao

In this paper, a diffusion two-phytoplankton one-zooplankton model with time delay, Beddington–DeAnglis functional response, and Holling II functional response is proposed. First, the existence and local stability of all equilibria of such model are studied. Then, the existence of Hopf bifurcation of the corresponding model without diffusion is given by taking time delay as the bifurcation parameter. Next, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are investigated by using the normal form theory and center manifold theorem. Furthermore, due to the local bifurcation theory of partial functional differential equations, Hopf bifurcation of the model is investigated by considering time delay as the bifurcation parameter. The explicit formulas to determine the properties of Hopf bifurcation are given by the method of the normal form theory and center manifold theorem for partial functional differential equations. Finally, some numerical simulations are performed to check out our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yanhui Zhai ◽  
Haiyun Bai ◽  
Ying Xiong ◽  
Xiaona Ma

This paper mainly modifies and further develops the Reyleigh price model. By modifying the basic Reyleigh model, we can more accurately illustrate the economic phenomena with price varying. First, we research the dynamics of the modified Reyleigh model with time delay. By employing the normal form theory and center manifold theory, we obtain some testable results on these issues. The conclusion confirms that a Hopf bifurcation occurs due to the existence of stability switches when the delay varies. Finally, some numerical simulations are given to illustrate the effectiveness of our results.


2011 ◽  
Vol 130-134 ◽  
pp. 2550-2557
Author(s):  
Yi Jing Liu ◽  
Zhi Shu Li ◽  
Xiao Mei Cai ◽  
Ya Lan Ye

The chaotic behaviors of the Arneodo’s system are investigated in this paper. Based on the Arneodo's system characteristic equation, the equilibria of the system and the conditions of Hopf bifurcations are obtained, which shows that Hopf bifurcations occur in this system. Then using the normal form theory, we give the explicit formulas which determine the stability of bifurcating periodic solutions and the direction of the Hopf bifurcation. Finally, some numerical examples are employed to demonstrate the effectiveness of the theoretical analysis.


2014 ◽  
Vol 926-930 ◽  
pp. 3314-3317
Author(s):  
Hong Bing Chen

In this paper, a predator–prey model with discrete and distributed delays is investigated. the direction of Hopf bifurcation as well as stability of periodic solution are studied. The method which we used is the normal form theory and center manifold. At last, an example showed the feasibility of results.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Haiyun Bai ◽  
Yanhui Zhai

We research the dynamics of the chemostat model with time delay. The conclusion confirms that a Hopf bifurcation occurs due to the existence of stability switches when the delay varies. By using the normal form theory and center manifold method, we derive the explicit formulas determining the stability and direction of bifurcating periodic solutions. Finally, some numerical simulations are given to illustrate the effectiveness of our results.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Changjin Xu

This paper deals with a competitor-competitor-mutualist Lotka-Volterra model. A series of sufficient criteria guaranteeing the stability and the occurrence of Hopf bifurcation for the model are obtained. Several concrete formulae determine the properties of bifurcating periodic solutions by applying the normal form theory and the center manifold principle. Computer simulations are given to support the theoretical predictions. At last, biological meaning and a conclusion are presented.


Sign in / Sign up

Export Citation Format

Share Document