scholarly journals THE BURNSIDE RING-VALUED MORSE FORMULA FOR VECTOR FIELDS ON MANIFOLDS WITH BOUNDARY

2009 ◽  
Vol 01 (01) ◽  
pp. 13-27 ◽  
Author(s):  
GABRIEL KATZ

Let G be a compact Lie group and A(G) its Burnside Ring. For a compact smooth n-dimensional G-manifold X equipped with a generic G-invariant vector field v, we prove an equivariant analog of the Morse formula [Formula: see text] which takes its values in A(G). Here Ind G(v) denotes the equivariant index of the field v, [Formula: see text] the v-induced Morse stratification (see [10]) of the boundary ∂X, and [Formula: see text] the class of the (n - k)-manifold [Formula: see text] in A(G). We examine some applications of this formula to the equivariant real algebraic fields v in compact domains X ⊂ ℝn defined via a generic polynomial inequality. Next, we link the above formula with the equivariant degrees of certain Gauss maps. This link is an equivariant generalization of Gottlieb's formulas ([3, 4]).

1996 ◽  
Vol 11 (06) ◽  
pp. 1077-1100 ◽  
Author(s):  
PAOLO ASCHIERI ◽  
PETER SCHUPP

We construct the space of vector fields on a generic quantum group. Its elements are products of elements of the quantum group itself with left-invariant vector fields. We study the duality between vector fields and one-forms and generalize the construction to tensor fields. A Lie derivative along any (also non-left-invariant) vector field is proposed and a puzzling ambiguity in its definition discussed. These results hold for a generic Hopf algebra.


2018 ◽  
Vol 18 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Ju Tan ◽  
Shaoqiang Deng

AbstractIn this paper, we consider a special class of solvable Lie groups such that for any x, y in their Lie algebras, [x, y] is a linear combination of x and y. We investigate the harmonicity properties of invariant vector fields of this kind of Lorentzian Lie groups. It is shown that any invariant unit time-like vector field is spatially harmonic. Moreover, we determine all vector fields which are critical points of the energy functional restricted to the space of smooth vector fields.


2020 ◽  
Vol 27 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Mehri Nasehi ◽  
Mansour Aghasi

AbstractIn this paper, we first classify Einstein-like metrics on hypercomplex four-dimensional Lie groups. Then we obtain the exact form of all harmonic maps on these spaces. We also calculate the energy of an arbitrary left-invariant vector field X on these spaces and determine all critical points for their energy functional restricted to vector fields of the same length. Furthermore, we give a complete and explicit description of all totally geodesic hypersurfaces of these spaces. The existence of Einstein hypercomplex four-dimensional Lie groups and the non-existence of non-trivial left-invariant Ricci and Yamabe solitons on these spaces are also proved.


2020 ◽  
Vol 20 (3) ◽  
pp. 391-400
Author(s):  
Gauree Shanker ◽  
Kirandeep Kaur

AbstractWe prove the existence of an invariant vector field on a homogeneous Finsler space with exponential metric, and we derive an explicit formula for the S-curvature of a homogeneous Finsler space with exponential metric. Using this formula, we obtain a formula for the mean Berwald curvature of such a homogeneous Finsler space.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Graziano Crasta ◽  
Virginia De Cicco ◽  
Annalisa Malusa

AbstractWe introduce a family of pairings between a bounded divergence-measure vector field and a function u of bounded variation, depending on the choice of the pointwise representative of u. We prove that these pairings inherit from the standard one, introduced in [G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 1983, 293–318], [G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal. 147 1999, 2, 89–118], all the main properties and features (e.g. coarea, Leibniz, and Gauss–Green formulas). We also characterize the pairings making the corresponding functionals semicontinuous with respect to the strict convergence in \mathrm{BV}. We remark that the standard pairing in general does not share this property.


2019 ◽  
Vol 16 (11) ◽  
pp. 1950180 ◽  
Author(s):  
I. P. Lobo ◽  
G. G. Carvalho

Motivated by the hindrance of defining metric tensors compatible with the underlying spinor structure, other than the ones obtained via a conformal transformation, we study how some geometric objects are affected by the action of a disformal transformation in the closest scenario possible: the disformal transformation in the direction of a null-like vector field. Subsequently, we analyze symmetry properties such as mutual geodesics and mutual Killing vectors, generalized Weyl transformations that leave the disformal relation invariant, and introduce the concept of disformal Killing vector fields. In most cases, we use the Schwarzschild metric, in the Kerr–Schild formulation, to verify our calculations and results. We also revisit the disformal operator using a Newman–Penrose basis to show that, in the null-like case, this operator is not diagonalizable.


Sign in / Sign up

Export Citation Format

Share Document