linear field
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 30)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
pp. 1-1
Author(s):  
Udumbara Wijesinghe ◽  
Akash Dey ◽  
William Krenik ◽  
Hal Edwards ◽  
Andrew Marshall ◽  
...  

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 2
Author(s):  
Doyeon Kim ◽  
Minho Yoon ◽  
Jiyoul Lee

Herein, we report the fabrications of high-performance polymer field-effect transistors (PFETs) with wire bar-coated semiconducting polymer film as an active layer. For an active semiconducting material of the PFETs, we employed cyclopentadithiophene-alt-benzothiadiazole (CDT-BTZ) that is a D-A-type-conjugated copolymer consisting of a repeated electron-donating unit and an electron-accepting unit, and the other two CDT-based D-A-type copolymer analogues are cyclopentadithiophene-alt-fluorinated-benzothiadiazole (CDT-FBTZ) and cyclopentadithiophene-alt-thiadiazolopyridine (CDT-PTZ). The linear field-effect mobility values obtained from the transfer curve of the PFETs fabricated with the spin-coating were 0.04 cm2/Vs, 0.16 cm2/Vs, and 0.31 cm2/Vs, for CDT-BTZ, CDT-FBTZ, and CDT-PTZ, respectively, while the mobility values measured from the PFETs with the wire bar-coated CDT-BTZ film, CDT-FBTZ film, and CDT-PTZ film were 0.16 cm2/Vs, 0.28 cm2/Vs, and 0.95 cm2/Vs, respectively, which are about 2 to 4 times higher values than those of the PFETs with spin-coated films. These results revealed that the aligned molecular chain is beneficial for the D-A-type semiconducting copolymer even though the charge transport in the D-A-type semiconducting copolymer is known to be less critical to the degree of disorder in film.


2021 ◽  
Vol 38 (12) ◽  
pp. 127401
Author(s):  
Qiangwei Yin ◽  
Zhijun Tu ◽  
Chunsheng Gong ◽  
Shangjie Tian ◽  
Hechang Lei

We report two new members of V-based kagome metals CsV6Sb6 and CsV8Sb12. The most striking structural feature of CsV6Sb6 is the V kagome bilayers. For CsV8Sb12, there is an intergrowth of two-dimensional V kagome layers and one-dimensional V chains, and the latter ones lead to the orthorhombic symmetry of this material. Further measurements indicate that these two materials exhibit metallic and Pauli paramagnetic behaviors. More importantly, different from CsV3Sb5, the charge density wave state and superconductivity do not emerge in CsV6Sb6 and CsV8Sb12 when temperature is above 2 K. Small magnetoresistance with saturation behavior and linear field dependence of Hall resistivity at high field and low temperature suggest that the carriers in both materials should be uncompensated with much different concentrations. The discovery of these two new V-based kagome metals sheds light on the exploration of correlated topological materials based on kagome lattice.


2021 ◽  
Author(s):  
Václav Římal ◽  
Morgane Callon ◽  
Alexander A. Malär ◽  
Riccardo Cadalbert ◽  
Anahit Torosyan ◽  
...  

Abstract. With the advent of faster magic-angle spinning (MAS) and higher magnetic fields, the resolution of biomolecular solid-state nuclear magnetic resonance (NMR) spectra has been continuously increasing. As a direct consequence, the always narrower spectral lines, especially in proton-detected spectroscopy, are also becoming more sensitive to temporal instabilities of the magnetic field in the sample volume. Field drifts in the order of tenths of ppm occur after probe insertion or temperature change, during cryogen refill, or are intrinsic to the superconducting high-field magnets, particularly in the months after charging. As an alternative to a field‒frequency lock based on deuterium solvent resonance rarely available for solid-state NMR, we present a strategy to compensate non-linear field drifts using simultaneous acquisition of a frequency reference (SAFR). It is based on the acquisition of an auxiliary 1D spectrum in each scan of the experiment. Typically, a small-flip-angle pulse is added at the beginning of the pulse sequence. Based on the frequency of the maximum of the solvent signal, the field evolu-tion in time is reconstructed and used to correct the raw data after acquisition, thereby acting in its principle as a digital lock system. The general applicability of our approach is demonstrated on 2D and 3D protein spectra during various situations with a non-linear field drift. SAFR with small-flip-angle pulses causes no significant loss in sensitivity or increase in exper-imental time in protein spectroscopy. The correction leads to the possibility of recording high-quality spectra in a typical biomolecular experiment even during non-linear field changes in the order of 0.1 ppm h−1 without the need for hardware solu-tions, such as stabilizing the temperature of the magnet bore. The improvement of linewidths and peak shapes turns out to be especially important for 1H-detected spectra under fast MAS, but the method is suitable for the detection of carbon or other nuclei as well.


2021 ◽  
pp. 2150185
Author(s):  
Rami Ahmad El-Nabulsi ◽  
Waranont Anukool

In this study, we have discussed the implications of acceleration in quantum mechanics by means of a generalized derivative operator (GDO). A new Schrödinger equation is obtained which depends on the reduced Compton wavelength of the particle. We have discussed its implications in quantum mechanics for different types of potentials mainly the infinite wall potential, the gravitational linear field potential, the Cornell potential and the Coulomb repulsive potential. The corresponding wave functions and discrete energies are modified and differ from the results obtained in the conventional formalism. The major results obtained concerned the large improvement of the ground energy of the electron subject to the gravitational acceleration in addition to Cornell potential and the emergence of quantized electric charge in the theory without including Dirac monopoles or using gauge theories.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
M. Sharif ◽  
Mariyah Aslam

AbstractThe objective of this paper is to discuss anisotropic solutions representing static spherical self-gravitating systems in f(R) theory. We employ the extended gravitational decoupling approach and transform temporal as well as radial metric potentials which decomposes the system of non-linear field equations into two arrays: one set corresponding to seed source and the other one involves additional source terms. The domain of the isotropic solution is extended in the background of f(R) Starobinsky model by employing the metric potentials of Krori–Barua spacetime. We determine two anisotropic solutions by employing some physical constraints on the extra source. The values of unknown constants are computed by matching the interior and exterior spacetimes. We inspect the physical viability, equilibrium and stability of the obtained solutions corresponding to the star Her X-I. It is observed that one of the two extensions satisfies all the necessary physical requirements for particular values of the decoupling parameter.


Author(s):  
Caiye Zhao ◽  
Xiaolei Yi ◽  
Qiang Hou ◽  
Jiajia Feng ◽  
Yufeng Zhang ◽  
...  

AbstractIn this work, a series of FeS1-xTex (0 ≤ x ≤ 0.15) single crystals were successfully synthesized by a hydrothermal method for the first time. According to the measurement of in-plane resistivity, Hall effect, and magnetoresistance (MR), we find that the superconducting transition temperature Tc is rapidly suppressed with the increasing Te substitution, and finally the superconductivity disappears when x > 0.05. With the substitution of Te for S, the residual resistivity ρ0 increases while the residual resistivity ratio (RRR) decreases monotonously. Meanwhile, the MR of FeS1-xTex is also reduced by Te doping. All these results reveal that the Te substitution introduces more impurity scattering. In consequence, the non-linear field-dependent of Hall resistivity ρxy at low temperature region is suppressed and a linear behavior is restored upon Te doping. The negative Hall coefficients RH for all the FeS1-xTex samples suggest that the electron-type carrier dominates the electrical conduction. Moreover, the MR of FeS1-xTex obviously follows Kohler’s law, indicating the isotropic scattering rates in the Fermi surface.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
D. J. Campbell ◽  
J. Collini ◽  
J. Sławińska ◽  
C. Autieri ◽  
L. Wang ◽  
...  

AbstractThe helimagnet FeP is part of a family of binary pnictide materials with the MnP-type structure, which share a nonsymmorphic crystal symmetry that preserves generic band structure characteristics through changes in elemental composition. It shows many similarities, including in its magnetic order, to isostructural CrAs and MnP, two compounds that are driven to superconductivity under applied pressure. Here we present a series of high magnetic field experiments on high-quality single crystals of FeP, showing that the resistance not only increases without saturation by up to several hundred times its zero-field value by 35 T, but that it also exhibits an anomalously linear field dependence over the entire range when the field is aligned precisely along the crystallographic c-axis. A close comparison of quantum oscillation frequencies to electronic structure calculations links this orientation to a semi-Dirac point in the band structure, which disperses linearly in a single direction in the plane perpendicular to field, a symmetry-protected feature of this entire material family. We show that the two striking features of magnetoresistance—large amplitude and linear field dependence—arise separately in this system, with the latter likely due to a combination of ordered magnetism and topological band structure.


2021 ◽  
Vol 118 (12) ◽  
pp. 122402
Author(s):  
Zhiqiang Cao ◽  
Weibin Chen ◽  
Shiyang Lu ◽  
Shaohua Yan ◽  
Yu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document