scholarly journals Legendrian contact homology and topological entropy

2019 ◽  
Vol 11 (01) ◽  
pp. 53-108 ◽  
Author(s):  
Marcelo R. R. Alves

In this paper we study the growth rate of a version of Legendrian contact homology, which we call strip Legendrian contact homology, in 3-dimensional contact manifolds and its relation to the topological entropy of Reeb flows. We show that: if for a pair of Legendrian knots in a contact 3-manifold [Formula: see text] the strip Legendrian contact homology is defined and has exponential homotopical growth with respect to the action, then every Reeb flow on [Formula: see text] has positive topological entropy. This has the following dynamical consequence: for all Reeb flows (even degenerate ones) on [Formula: see text] the number of hyperbolic periodic orbits grows exponentially with respect to the period. We show that for an infinite family of 3-manifolds, infinitely many different contact structures exist that possess a pair of Legendrian knots for which the strip Legendrian contact homology has exponential growth rate.

2011 ◽  
Vol 148 (1) ◽  
pp. 304-334 ◽  
Author(s):  
Miguel Abreu ◽  
Leonardo Macarini

AbstractIn this paper we show that any good toric contact manifold has a well-defined cylindrical contact homology, and describe how it can be combinatorially computed from the associated moment cone. As an application, we compute the cylindrical contact homology of a particularly nice family of examples that appear in the work of Gauntlett et al. on Sasaki–Einstein metrics. We show in particular that these give rise to a new infinite family of non-equivalent contact structures on S2×S3 in the unique homotopy class of almost contact structures with vanishing first Chern class.


2021 ◽  
pp. 1-44
Author(s):  
MARCELO R. R. ALVES ◽  
ABROR PIRNAPASOV

Abstract We develop a forcing theory of topological entropy for Reeb flows in dimension three. A transverse link L in a closed contact $3$ -manifold $(Y,\xi )$ is said to force topological entropy if $(Y,\xi )$ admits a Reeb flow with vanishing topological entropy, and every Reeb flow on $(Y,\xi )$ realizing L as a set of periodic Reeb orbits has positive topological entropy. Our main results establish topological conditions on a transverse link L, which imply that L forces topological entropy. These conditions are formulated in terms of two Floer theoretical invariants: the cylindrical contact homology on the complement of transverse links introduced by Momin [A. Momin. J. Mod. Dyn.5 (2011), 409–472], and the strip Legendrian contact homology on the complement of transverse links, introduced by Alves [M. R. R. Alves. PhD Thesis, Université Libre de Bruxelles, 2014] and further developed here. We then use these results to show that on every closed contact $3$ -manifold that admits a Reeb flow with vanishing topological entropy, there exist transverse knots that force topological entropy.


2019 ◽  
Vol 6 (1) ◽  
pp. 31-64 ◽  
Author(s):  
David E. Blair

AbstractThis survey is a presentation of the five lectures on Riemannian contact geometry that the author gave at the conference “RIEMain in Contact”, 18-22 June 2018 in Cagliari, Sardinia. The author was particularly pleased to be asked to give this presentation and appreciated the organizers’ kindness in dedicating the conference to him. Georges Reeb once made the comment that the mere existence of a contact form on a manifold should in some sense “tighten up” the manifold. The statement seemed quite pertinent for a conference that brought together both geometers and topologists working on contact manifolds, whether in terms of “tight” vs. “overtwisted” or whether an associated metric should have some positive curvature. The first section will lay down the basic definitions and examples of the subject of contact metric manifolds. The second section will be a continuation of the first discussing tangent sphere bundles, contact structures on 3-dimensional Lie groups and a brief treatment of submanifolds. Section III will be devoted to the curvature of contact metric manifolds. Section IV will discuss complex contact manifolds and some older style topology. Section V treats curvature functionals and Ricci solitons. A sixth section has been added giving a discussion of the question of whether a Riemannian metric g can be an associated metric for more than one contact structure; at the conference this was an addendum to the third lecture.


2010 ◽  
Vol 150 (2) ◽  
pp. 291-311 ◽  
Author(s):  
GOKHAN CIVAN ◽  
PAUL KOPROWSKI ◽  
JOHN ETNYRE ◽  
JOSHUA M. SABLOFF ◽  
ALDEN WALKER

AbstractLegendrian contact homology (LCH) is a powerful non-classical invariant of Legendrian knots. Linearization makes the LCH computationally tractable at the expense of discarding nonlinear (and non-commutative) information. To recover some of the nonlinear information while preserving computability, we introduce invariant cup and Massey products – and, more generally, an A∞ structure – on the linearized LCH. We apply the products and A∞ structure in three ways: to find infinite families of Legendrian knots that are not isotopic to their Legendrian mirrors, to reinterpret the duality theorem of the fourth author in terms of the cup product, and to recover higher-order linearizations of the LCH.


Author(s):  
David E. Blair

SynopsisClassically the tangent sphere bundles have formed a large class of contact manifolds; their contact structures are not in general regular, however. Specifically we prove that the natural contact structure on the tangent sphere bundle of a compact Riemannian manifold of non-positive constant curvature is not regular.


2018 ◽  
Vol 10 (03) ◽  
pp. 493-530
Author(s):  
Mark McLean

In this paper, we give partial answers to the following questions: Which contact manifolds are contactomorphic to links of isolated complex singularities? Which symplectic manifolds are symplectomorphic to smooth affine varieties? The invariant that we will use to distinguish such manifolds is called the growth rate of wrapped Floer cohomology. Using this invariant we show that if [Formula: see text] is a simply connected manifold whose unit cotangent bundle is contactomorphic to the link of an isolated singularity or whose cotangent bundle is symplectomorphic to a smooth affine variety then M must be rationally elliptic and so it must have certain bounds on its Betti numbers.


Sign in / Sign up

Export Citation Format

Share Document