scholarly journals Inertial gradient method for fluorescence molecular tomography

Author(s):  
Lei Wang ◽  
Hui Huang

Image reconstruction in fluorescence molecular tomography involves seeking stable and meaningful solutions via the inversion of a highly under-determined and severely ill-posed linear mapping. An attractive scheme consists of minimizing a convex objective function that includes a quadratic error term added to a convex and nonsmooth sparsity-promoting regularizer. Choosing [Formula: see text]-norm as a particular case of a vast class of nonsmooth convex regularizers, our paper proposes a low per-iteration complexity gradient-based first-order optimization algorithm for the [Formula: see text]-regularized least squares inverse problem of image reconstruction. Our algorithm relies on a combination of two ideas applied to the nonsmooth convex objective function: Moreau–Yosida regularization and inertial dynamics-based acceleration. We also incorporate into our algorithm a gradient-based adaptive restart strategy to further enhance the practical performance. Extensive numerical experiments illustrate that in several representative test cases (covering different depths of small fluorescent inclusions, different noise levels and different separation distances between small fluorescent inclusions), our algorithm can significantly outperform three state-of-the-art algorithms in terms of CPU time taken by reconstruction, despite almost the same reconstructed images produced by each of the four algorithms.

2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Wanping Yang ◽  
Jinkai Zhao ◽  
Fengmin Xu

The constrained rank minimization problem has various applications in many fields including machine learning, control, and signal processing. In this paper, we consider the convex constrained rank minimization problem. By introducing a new variable and penalizing an equality constraint to objective function, we reformulate the convex objective function with a rank constraint as a difference of convex functions based on the closed-form solutions, which can be reformulated as DC programming. A stepwise linear approximative algorithm is provided for solving the reformulated model. The performance of our method is tested by applying it to affine rank minimization problems and max-cut problems. Numerical results demonstrate that the method is effective and of high recoverability and results on max-cut show that the method is feasible, which provides better lower bounds and lower rank solutions compared with improved approximation algorithm using semidefinite programming, and they are close to the results of the latest researches.


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 257-269 ◽  
Author(s):  
Qi Wang ◽  
Pengcheng Zhang ◽  
Jianming Wang ◽  
Qingliang Chen ◽  
Zhijie Lian ◽  
...  

Purpose Electrical impedance tomography (EIT) is a technique for reconstructing the conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Image reconstruction for EIT is a nonlinear problem. A generalized inverse operator is usually ill-posed and ill-conditioned. Therefore, the solutions for EIT are not unique and highly sensitive to the measurement noise. Design/methodology/approach This paper develops a novel image reconstruction algorithm for EIT based on patch-based sparse representation. The sparsifying dictionary optimization and image reconstruction are performed alternately. Two patch-based sparsity, namely, square-patch sparsity and column-patch sparsity, are discussed and compared with the global sparsity. Findings Both simulation and experimental results indicate that the patch based sparsity method can improve the quality of image reconstruction and tolerate a relatively high level of noise in the measured voltages. Originality/value EIT image is reconstructed based on patch-based sparse representation. Square-patch sparsity and column-patch sparsity are proposed and compared. Sparse dictionary optimization and image reconstruction are performed alternately. The new method tolerates a relatively high level of noise in measured voltages.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3373 ◽  
Author(s):  
Ziran Wei ◽  
Jianlin Zhang ◽  
Zhiyong Xu ◽  
Yongmei Huang ◽  
Yong Liu ◽  
...  

In the reconstruction of sparse signals in compressed sensing, the reconstruction algorithm is required to reconstruct the sparsest form of signal. In order to minimize the objective function, minimal norm algorithm and greedy pursuit algorithm are most commonly used. The minimum L1 norm algorithm has very high reconstruction accuracy, but this convex optimization algorithm cannot get the sparsest signal like the minimum L0 norm algorithm. However, because the L0 norm method is a non-convex problem, it is difficult to get the global optimal solution and the amount of calculation required is huge. In this paper, a new algorithm is proposed to approximate the smooth L0 norm from the approximate L2 norm. First we set up an approximation function model of the sparse term, then the minimum value of the objective function is solved by the gradient projection, and the weight of the function model of the sparse term in the objective function is adjusted adaptively by the reconstruction error value to reconstruct the sparse signal more accurately. Compared with the pseudo inverse of L2 norm and the L1 norm algorithm, this new algorithm has a lower reconstruction error in one-dimensional sparse signal reconstruction. In simulation experiments of two-dimensional image signal reconstruction, the new algorithm has shorter image reconstruction time and higher image reconstruction accuracy compared with the usually used greedy algorithm and the minimum norm algorithm.


2007 ◽  
Vol 2007 ◽  
pp. 1-19 ◽  
Author(s):  
Shang Shang ◽  
Jing Bai ◽  
Xiaolei Song ◽  
Hongkai Wang ◽  
Jaclyn Lau

Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.


2008 ◽  
Vol 28 (7) ◽  
pp. 1262-1268
Author(s):  
张丽敏 Zhang Limin ◽  
和慧园 He Huiyuan ◽  
高峰 Gao Feng ◽  
赵会娟 Zhao Huijuan

Author(s):  
Lei Chen ◽  
Jiang Chen

The adjoint method eliminates the dependence of the gradient of the objective function with respect to design variables on the flow field making the obtainment of the gradient both accurate and fast. For this reason, the adjoint method has become the focus of attention in recent years. This paper develops a continuous adjoint formulation for through-flow aerodynamic shape design in a multi-stage gas turbine environment based on a S2 surface quasi-3D problem governed by the Euler equations with source terms. Given the general expression of the objective function calculated via a boundary integral, the adjoint equations and their boundary conditions are derived in detail by introducing adjoint variable vectors. As a result, the final expression of the objective function gradient only includes the terms pertinent to those physical shape variations that are calculated by metric variations. The adjoint system is solved numerically by a finite-difference method with explicit Euler time-marching scheme and a Jameson spatial scheme which employs first and third order dissipative flux. Integrating the blade stagger angles and passage perturbation parameterization with the simple steepest decent method, a gradient-based aerodynamic shape design system is constructed. Finally, the application of the adjoint method is validated through a 5-stage turbine blade and passage optimization with an objective function of entropy generation. The result demonstrates that the gradient-based system can be used for turbine aerodynamic design.


2016 ◽  
Vol 72 (5) ◽  
pp. 1230-1243 ◽  
Author(s):  
Thiago de Castro Martins ◽  
Marcos de Sales Guerra Tsuzuki ◽  
Erick Dario León Bueno de Camargo ◽  
Raul Gonzalez Lima ◽  
Fernando Silva de Moura ◽  
...  

1996 ◽  
Vol 176 ◽  
pp. 289-298 ◽  
Author(s):  
Klaus G. Strassmeier

“Are results from ill-posed problems, like Doppler-imaging, conclusive at all?” and “Could polar spots be simple image-reconstruction artifacts?” are often asked questions. Although I can not definitively answer them, I will present observational evidence for the existence of cool starspots at or very near a stellar rotation pole.


Sign in / Sign up

Export Citation Format

Share Document