scholarly journals Arithmetic progressions in finite groups

Author(s):  
Marius Tărnăuceanu

In this paper, we describe the structure of finite groups whose element orders or proper (abelian) subgroup orders form an arithmetic progression of ratio [Formula: see text]. This extends the case [Formula: see text] studied in previous papers [R. Brandl and W. Shi, Finite groups whose element orders are consecutive integers, J. Algebra 143 (1991) 388–400; Y. Feng, Finite groups whose abelian subgroup orders are consecutive integers, J. Math. Res. Exp. 18 (1998) 503–506; W. Shi, Finite groups whose proper subgroup orders are consecutive integers, J. Math. Res. Exp. 14 (1994) 165–166].

2020 ◽  
Vol 193 (3) ◽  
pp. 637-655
Author(s):  
L. Hajdu ◽  
Á. Papp

Abstract Products of terms of arithmetic progressions yielding a perfect power have been long investigated by many mathematicians. In the particular case of consecutive integers, various finiteness results are known for the polynomial values of such products. In the present paper we consider generalizations of these result in various directions.


1991 ◽  
Vol 143 (2) ◽  
pp. 388-400 ◽  
Author(s):  
Rolf Brandl ◽  
Shi Wujie

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2259
Author(s):  
Kai An Sim ◽  
Kok Bin Wong

In 1977, Davis et al., proposed a method to generate an arrangement of [n]={1,2,…,n} that avoids three-term monotone arithmetic progressions. Consequently, this arrangement avoids k-term monotone arithmetic progressions in [n] for k≥3. Hence, we are interested in finding an arrangement of [n] that avoids k-term monotone arithmetic progression, but allows k−1-term monotone arithmetic progression. In this paper, we propose a method to rearrange the rows of a magic square of order 2k−3 and show that this arrangement does not contain a k-term monotone arithmetic progression. Consequently, we show that there exists an arrangement of n consecutive integers such that it does not contain a k-term monotone arithmetic progression, but it contains a k−1-term monotone arithmetic progression.


1968 ◽  
Vol 11 (3) ◽  
pp. 409-414 ◽  
Author(s):  
E.R. Berlekamp

For k ≥2, t ≥2, let W(k, t) denote the least integer m such that in every partition of m consecutive integers into k sets, atleast one set contains an arithmetic progression of t+1 terms. This paper presents a construction which improves the best previously known lower bounds on W(k, t) for small k and large t.


2009 ◽  
Vol 05 (04) ◽  
pp. 625-634
Author(s):  
SERGEI V. KONYAGIN ◽  
MELVYN B. NATHANSON

Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a + im : i ∈ N0}. For positive integers a,b,c,d,m the sum of products set Rm(a)Rm(b) + Rm(c)Rm(d) consists of all integers of the form (a+im) · (b+jm)+(c+km)(d+ℓm) for some i,j,k,ℓ ∈ Z. It is proved that if gcd (a,b,c,d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class Rm(ab+cd), and that the sum of products set Pm(a)Pm(b)+Pm(c)Pm eventually coincides with the infinite arithmetic progression Pm(ab+cd).


Author(s):  
Costantino Delizia ◽  
Chiara Nicotera

AbstractThe structure of locally soluble periodic groups in which every abelian subgroup is locally cyclic was described over 20 years ago. We complete the aforementioned characterization by dealing with the non-periodic case. We also describe the structure of locally finite groups in which all abelian subgroups are locally cyclic.


2017 ◽  
Vol 9 (5) ◽  
pp. 73
Author(s):  
Do Tan Si

We show that a sum of powers on an arithmetic progression is the transform of a monomial by a differential operator and that its generating function is simply related to that of the Bernoulli polynomials from which consequently it may be calculated. Besides, we show that it is obtainable also from the sums of powers of integers, i.e. from the Bernoulli numbers which in turn may be calculated by a simple algorithm.By the way, for didactic purpose, operator calculus is utilized for proving in a concise manner the main properties of the Bernoulli polynomials. 


2008 ◽  
Vol 78 (3) ◽  
pp. 431-436 ◽  
Author(s):  
XUE-GONG SUN ◽  
JIN-HUI FANG

AbstractErdős and Odlyzko proved that odd integers k such that k2n+1 is prime for some positive integer n have a positive lower density. In this paper, we characterize all arithmetic progressions in which natural numbers that can be expressed in the form (p−1)2−n (where p is a prime number) have a positive proportion. We also prove that an arithmetic progression consisting of odd numbers can be obtained from a covering system if and only if those integers in such a progression which can be expressed in the form (p−1)2−n have an asymptotic density of zero.


Author(s):  
Juan Martínez ◽  
Alexander Moretó

In 2014, Baumslag and Wiegold proved that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. This has led to a number of results that characterize the nilpotence of a group (or the existence of nilpotent Hall subgroups, or the existence of normal Hall subgroups) in terms of prime divisors of element orders. Here, we look at these results with a new twist. The first of our main results asserts that G is nilpotent if and only if o(xy) ⩽ o(x)o(y) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold theorem. The proof of this result is elementary. We prove some variations of this result that depend on the classification of finite simple groups.


Sign in / Sign up

Export Citation Format

Share Document