b-Chromatic Sum and b-Continuity Property of Some Graphs

2021 ◽  
pp. 2150012
Author(s):  
P. C. Lisna ◽  
M. S. Sunitha

A b-coloring of a graph [Formula: see text] is a proper coloring of the vertices of [Formula: see text] such that there exist a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph [Formula: see text], denoted by [Formula: see text], is the largest integer [Formula: see text] such that [Formula: see text] has a b-coloring with [Formula: see text] colors. The b-chromatic sum of a graph [Formula: see text], denoted by [Formula: see text], is introduced and it is defined as the minimum of sum of colors [Formula: see text] of [Formula: see text] for any [Formula: see text] in a b-coloring of [Formula: see text] using [Formula: see text] colors. A graph [Formula: see text] is b-continuous, if it admits a b-coloring with [Formula: see text] colors, for every [Formula: see text]. In this paper, the [Formula: see text]-continuity property of corona of two cycles, corona of two star graphs and corona of two wheel graphs with unequal number of vertices is discussed. The b-continuity property of corona of any two graphs with same number of vertices is also discussed. Also, the b-continuity property of Mycielskian of complete graph, complete bipartite graph and paths are discussed. The b-chromatic sum of power graph of a path is also obtained.

2015 ◽  
Vol 07 (04) ◽  
pp. 1550040 ◽  
Author(s):  
P. C. Lisna ◽  
M. S. Sunitha

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by [Formula: see text], is the maximum integer [Formula: see text] such that G admits a b-coloring with [Formula: see text] colors. In this paper we introduce a new concept, the b-chromatic sum of a graph [Formula: see text], denoted by [Formula: see text] and is defined as the minimum of sum of colors [Formula: see text] of [Formula: see text] for all [Formula: see text] in a b-coloring of [Formula: see text] using [Formula: see text] colors. Also obtained the b-chromatic sum of paths, cycles, wheel graph, complete graph, star graph, double star graph, complete bipartite graph, corona of paths and corona of cycles.


2015 ◽  
Vol 15 (01n02) ◽  
pp. 1550004 ◽  
Author(s):  
P. C. LISNA ◽  
M. S. SUNITHA

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by [Formula: see text], is the maximal integer k such that G has a b-coloring with k colors. In this paper, the b-chromatic numbers of the coronas of cycles, star graphs and wheel graphs with different numbers of vertices, respectively, are obtained. Also the bounds for the b-chromatic number of corona of any two graphs is discussed.


2020 ◽  
Vol 20 (02) ◽  
pp. 2050007
Author(s):  
P. C. LISNA ◽  
M. S. SUNITHA

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by φ(G), is the largest integer k such that G has a b-coloring with k colors. The b-chromatic sum of a graph G(V, E), denoted by φ′(G) is defined as the minimum of sum of colors c(v) of v for all v ∈ V in a b-coloring of G using φ(G) colors. The Mycielskian or Mycielski, μ(H) of a graph H with vertex set {v1, v2,…, vn} is a graph G obtained from H by adding a set of n + 1 new vertices {u, u1, u2, …, un} joining u to each vertex ui(1 ≤ i ≤ n) and joining ui to each neighbour of vi in H. In this paper, the b-chromatic sum of Mycielskian of cycles, complete graphs and complete bipartite graphs are discussed. Also, an application of b-coloring in image processing is discussed here.


2011 ◽  
Vol 3 (2) ◽  
pp. 321-329 ◽  
Author(s):  
R. Ponraj ◽  
J. X. V. Parthipan ◽  
R. Kala

Let G be a (p,q) graph. An injective map ƒ: V (G) →{±1, ±2,...,±p} is called a pair sum labeling if the induced edge function, ƒe: E(G)→Z -{0} defined by ƒe (uv)=ƒ(u)+ƒ(v) is one-one and ƒe(E(G)) is either of the form {±k1, ±k2,…, ±kq/2} or {±k1, ±k2,…, ±k(q-1)/2} {k (q+1)/2} according as q is even or odd. Here we prove that every graph is a subgraph of a connected pair sum graph. Also we investigate the pair sum labeling of some graphs which are obtained from cycles. Finally we enumerate all pair sum graphs of order ≤ 5.Keywords: Cycle; Path; Bistar; Complete graph; Complete bipartite graph; Triangular snake.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i2.6290                 J. Sci. Res. 3 (2), 321-329 (2011)


1970 ◽  
Vol 22 (5) ◽  
pp. 1082-1096 ◽  
Author(s):  
Don R. Lick ◽  
Arthur T. White

Graphs possessing a certain property are often characterized in terms of a type of configuration or subgraph which they cannot possess. For example, a graph is totally disconnected (or, has chromatic number one) if and only if it contains no lines; a graph is a forest (or, has point-arboricity one) if and only if it contains no cycles. Chartrand, Geller, and Hedetniemi [2] defined a graph to have property Pn if it contains no subgraph homeomorphic from the complete graph Kn+1 or the complete bipartite graphFor the first four natural numbers n, the graphs with property Pn are exactly the totally disconnected graphs, forests, outerplanar and planar graphs, respectively. This unification suggested the extension of many results known to hold for one of the above four classes of graphs to one or more of the remaining classes.


Author(s):  
A. Mohammed Abid ◽  
T. R. Ramesh Rao

A strict strong coloring of a graph [Formula: see text] is a proper coloring of [Formula: see text] in which every vertex of the graph is adjacent to every vertex of some color class. The minimum number of colors required for a strict strong coloring of [Formula: see text] is called the strict strong chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we characterize the results on strict strong coloring of Mycielskian graphs and iterated Mycielskian graphs.


2020 ◽  
Vol 30 (1) ◽  
pp. 7-22
Author(s):  
Boris A. Pogorelov ◽  
Marina A. Pudovkina

AbstractThe Jevons group AS̃n is an isometry group of the Hamming metric on the n-dimensional vector space Vn over GF(2). It is generated by the group of all permutation (n × n)-matrices over GF(2) and the translation group on Vn. Earlier the authors of the present paper classified the submetrics of the Hamming metric on Vn for n ⩾ 4, and all overgroups of AS̃n which are isometry groups of these overmetrics. In turn, each overgroup of AS̃n is known to define orbital graphs whose “natural” metrics are submetrics of the Hamming metric. The authors also described all distance-transitive orbital graphs of overgroups of the Jevons group AS̃n. In the present paper we classify the distance-transitive orbital graphs of overgroups of the Jevons group. In particular, we show that some distance-transitive orbital graphs are isomorphic to the following classes: the complete graph 2n, the complete bipartite graph K2n−1,2n−1, the halved (n + 1)-cube, the folded (n + 1)-cube, the graphs of alternating forms, the Taylor graph, the Hadamard graph, and incidence graphs of square designs.


2019 ◽  
Vol 11 (1) ◽  
pp. 95-108
Author(s):  
Sudev Naduvath ◽  
Johan Kok

Abstract A vertex v of a given graph is said to be in a rainbow neighbourhood of G if every color class of G consists of at least one vertex from the closed neighbourhood N[v]. A maximal proper coloring of a graph G is a J-coloring if and only if every vertex of G belongs to a rainbow neighbourhood of G. In general all graphs need not have a J-coloring, even though they admit a chromatic coloring. In this paper, we characterise graphs which admit a J-coloring. We also discuss some preliminary results in respect of certain graph operations which admit a J-coloring under certain conditions.


10.37236/8184 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Matt Bowen ◽  
Ander Lamaison ◽  
Alp Müyesser

We provide multicolored and infinite generalizations for a Ramsey-type problem raised by Bollobás, concerning colorings of $K_n$ where each color is well-represented. Let $\chi$ be a coloring of the edges of a complete graph on $n$ vertices into $r$ colors. We call $\chi$ $\varepsilon$-balanced if all color classes have $\varepsilon$ fraction of the edges. Fix some graph $H$, together with an $r$-coloring of its edges. Consider the smallest natural number $R_\varepsilon^r(H)$ such that for all $n\geq R_\varepsilon^r(H)$, all $\varepsilon$-balanced colorings $\chi$ of $K_n$ contain a subgraph isomorphic to $H$ in its coloring. Bollobás conjectured a simple characterization of $H$ for which $R_\varepsilon^2(H)$ is finite, which was later proved by Cutler and Montágh. Here, we obtain a characterization for arbitrary values of $r$, as well as asymptotically tight bounds. We also discuss generalizations to graphs defined on perfect Polish spaces, where the corresponding notion of balancedness is each color class being non-meagre. 


Sign in / Sign up

Export Citation Format

Share Document