A note on the relationship between graph energy and determinant of adjacency matrix

2019 ◽  
Vol 11 (01) ◽  
pp. 1950001
Author(s):  
Igor Ž. Milovanović ◽  
Emina I. Milovanović ◽  
Marjan M. Matejić ◽  
Akbar Ali

Let [Formula: see text] be a simple graph of order [Formula: see text], without isolated vertices. Denote by [Formula: see text] the adjacency matrix of [Formula: see text]. Eigenvalues of the matrix [Formula: see text], [Formula: see text], form the spectrum of the graph [Formula: see text]. An important spectrum-based invariant is the graph energy, defined as [Formula: see text]. The determinant of the matrix [Formula: see text] can be calculated as [Formula: see text]. Recently, Altindag and Bozkurt [Lower bounds for the energy of (bipartite) graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 9–14] improved some well-known bounds on the graph energy. In this paper, several inequalities involving the graph invariants [Formula: see text] and [Formula: see text] are derived. Consequently, all the bounds established in the aforementioned paper are improved.

2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Akbar Jahanbani ◽  
Seyed Mahmoud Sheikholeslami ◽  
Rana Khoeilar

Let G be a simple graph of order n . The matrix ℒ G = D G − A G is called the Laplacian matrix of G , where D G and A G denote the diagonal matrix of vertex degrees and the adjacency matrix of G , respectively. Let l 1 G , l n − 1 G be the largest eigenvalue, the second smallest eigenvalue of ℒ G respectively, and λ 1 G be the largest eigenvalue of A G . In this paper, we will present sharp upper and lower bounds for l 1 G and l n − 1 G . Moreover, we investigate the relation between l 1 G and λ 1 G .


2016 ◽  
Vol 08 (04) ◽  
pp. 1650063
Author(s):  
Indulal Gopalapillai

Let [Formula: see text] be a simple graph with an adjacency matrix [Formula: see text]. Then the eigenvalues of [Formula: see text] are the eigenvalues of [Formula: see text] and form the spectrum, [Formula: see text] of [Formula: see text]. The graph [Formula: see text] is integral if [Formula: see text] consists of only integers. In this paper, we define three new operations on graphs and characterize all integral graphs in the resulting families. The resulting families are denoted by [Formula: see text], and [Formula: see text]. These characterizations allow us to exhibit many new infinite families of integral graphs.


2022 ◽  
Vol 70 (1) ◽  
pp. 13-23
Author(s):  
Ivan Gutman

Introduction/purpose: In the current literature, several dozens of vertex-degree-based (VDB) graph invariants are being studied. To each such invariant, a matrix can be associated. The VDB energy is the energy (= sum of the absolute values of the eigenvalues) of the respective VDB matrix. The paper examines some general properties of the VDB energy of bipartite graphs. Results: Estimates (lower and upper bounds) are established for the VDB energy of bipartite graphs in which there are no cycles of size divisible by 4, in terms of ordinary graph energy. Conclusion: The results of the paper contribute to the spectral theory of VDB matrices, especially to the general theory of VDB energy.


2020 ◽  
Vol 68 (4) ◽  
pp. 715-725
Author(s):  
Ivan Gutman

Introduction/purpose: The paper presents numerous vertex-degree-based graph invariants considered in the literature. A matrix can be associated to each of these invariants. By means of these matrices, the respective vertex-degree-based graph energies are defined as the sum of the absolute values of the eigenvalues. Results: The article determines the conditions under which the considered graph energies are greater or smaller than the ordinary graph energy (based on the adjacency matrix). Conclusion: The results of the paper contribute to the theory of graph energies as well as to the theory of vertex-degree-based graph invariants.


2015 ◽  
Vol 30 ◽  
pp. 812-826
Author(s):  
Alexander Farrugia ◽  
Irene Sciriha

A universal adjacency matrix U of a graph G is a linear combination of the 0–1 adjacency matrix A, the diagonal matrix of vertex degrees D, the identity matrix I and the matrix J each of whose entries is 1. A main eigenvalue of U is an eigenvalue having an eigenvector that is not orthogonal to the all–ones vector. It is shown that the number of distinct main eigenvalues of U associated with a simple graph G is at most the number of orbits of any automorphism of G. The definition of a U–controllable graph is given using control–theoretic techniques and several necessary and sufficient conditions for a graph to be U–controllable are determined. It is then demonstrated that U–controllable graphs are asymmetric and that the converse is false, showing that there exist both regular and non–regular asymmetric graphs that are not U–controllable for any universal adjacency matrix U. To aid in the discovery of these counterexamples, a gamma–Laplacian matrix L(gamma) is used, which is a simplified form of U. It is proved that any U-controllable graph is a L(gamma)–controllable graph for some parameter gamma.


2021 ◽  
Vol 40 (6) ◽  
pp. 1431-1448
Author(s):  
Ansderson Fernandes Novanta ◽  
Carla Silva Oliveira ◽  
Leonardo de Lima

Let G be a graph on n vertices. The Laplacian matrix of G, denoted by L(G), is defined as L(G) = D(G) −A(G), where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the vertex degrees of G. A graph G is said to be L-integral if all eigenvalues of the matrix L(G) are integers. In this paper, we characterize all Lintegral non-bipartite graphs among all connected graphs with at most two vertices of degree larger than or equal to three.


2019 ◽  
Vol 12 (01) ◽  
pp. 2050006 ◽  
Author(s):  
A. Alhevaz ◽  
M. Baghipur ◽  
E. Hashemi ◽  
S. Paul

The distance signless Laplacian matrix of a connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. If [Formula: see text] are the distance signless Laplacian eigenvalues of a simple graph [Formula: see text] of order [Formula: see text] then we put forward the graph invariants [Formula: see text] and [Formula: see text] for the sum of [Formula: see text]-largest and the sum of [Formula: see text]-smallest distance signless Laplacian eigenvalues of a graph [Formula: see text], respectively. We obtain lower bounds for the invariants [Formula: see text] and [Formula: see text]. Then, we present some inequalities between the vertex transmissions, distance eigenvalues, distance Laplacian eigenvalues, and distance signless Laplacian eigenvalues of graphs. Finally, we give some new results and bounds for the distance signless Laplacian energy of graphs.


Filomat ◽  
2018 ◽  
Vol 32 (7) ◽  
pp. 2667-2675
Author(s):  
Emina Milovanovic ◽  
Igor Milovanovic ◽  
Muhammad Jamil

Let G = (V,E), V = {1,2,..., n}, E = {e1,e2,..., em}, be a simple graph with n vertices and m edges. Denote by d1 ? d2 ? ... ? dn > 0, and d(e1) ? d(e2) ? d(em), sequences of vertex and edge degrees, respectively. If i-th and j-th vertices of G are adjacent, it is denoted as i ~ j. Graph invariants referred to as the first, second and the first reformulated Zagreb indices are defined as M1=?ni=1 di2, M2= ?i~j didj and EM1 = ?mi=1 d(ei)2, respectively. Let ?1 ? ?2? ... ?n be eigenvalues of G. With ?(G) = ?1 a spectral radius of G is denoted. Lower bounds for invariants M1, M2, EM1 and ?(G) are obtained.


2021 ◽  
Vol 45 (02) ◽  
pp. 299-307
Author(s):  
HANYUAN DENG ◽  
TOMÁŠ VETRÍK ◽  
SELVARAJ BALACHANDRAN

The harmonic index of a conected graph G is defined as H(G) = ∑ uv∈E(G) 2 d(u)+d-(v), where E(G) is the edge set of G, d(u) and d(v) are the degrees of vertices u and v, respectively. The spectral radius of a square matrix M is the maximum among the absolute values of the eigenvalues of M. Let q(G) be the spectral radius of the signless Laplacian matrix Q(G) = D(G) + A(G), where D(G) is the diagonal matrix having degrees of the vertices on the main diagonal and A(G) is the (0, 1) adjacency matrix of G. The harmonic index of a graph G and the spectral radius of the matrix Q(G) have been extensively studied. We investigate the relationship between the harmonic index of a graph G and the spectral radius of the matrix Q(G). We prove that for a connected graph G with n vertices, we have ( 2 || ----n----- ||{ 2 (n − 1), if n ≥ 6, -q(G-)- ≤ | 16-, if n = 5, H (G ) || 5 |( 3, if n = 4, and the bounds are best possible.


Author(s):  
Anderson Fernandes Novanta ◽  
Carla Silva Oliveira ◽  
Leonardo Silva de Lima

Let G be a graph on n vertices. The Laplacian matrix of G, denoted by L(G), is defined as L(G) = D(G) − A(G), where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the vertex degrees of G. A graph G is said to be L-integral is all eigenvalues of the matrix L(G) are integers. In this paper, we characterize all L-integral non-bipartite graphs among all connected graphs with at most two vertices of degree larger than or equal to three.


Sign in / Sign up

Export Citation Format

Share Document