scholarly journals Estimating vertex-degree-based energies

2022 ◽  
Vol 70 (1) ◽  
pp. 13-23
Author(s):  
Ivan Gutman

Introduction/purpose: In the current literature, several dozens of vertex-degree-based (VDB) graph invariants are being studied. To each such invariant, a matrix can be associated. The VDB energy is the energy (= sum of the absolute values of the eigenvalues) of the respective VDB matrix. The paper examines some general properties of the VDB energy of bipartite graphs. Results: Estimates (lower and upper bounds) are established for the VDB energy of bipartite graphs in which there are no cycles of size divisible by 4, in terms of ordinary graph energy. Conclusion: The results of the paper contribute to the spectral theory of VDB matrices, especially to the general theory of VDB energy.

2020 ◽  
Vol 68 (4) ◽  
pp. 715-725
Author(s):  
Ivan Gutman

Introduction/purpose: The paper presents numerous vertex-degree-based graph invariants considered in the literature. A matrix can be associated to each of these invariants. By means of these matrices, the respective vertex-degree-based graph energies are defined as the sum of the absolute values of the eigenvalues. Results: The article determines the conditions under which the considered graph energies are greater or smaller than the ordinary graph energy (based on the adjacency matrix). Conclusion: The results of the paper contribute to the theory of graph energies as well as to the theory of vertex-degree-based graph invariants.


Author(s):  
Akbar Jahanbani

Let G be a graph with n vertices and let 1; 2; : : : ; n be the eigenvalues of Randic matrix. The Randic Estrada index of G is REE(G) = Ón i=1 ei . In this paper, we establish lower and upper bounds for Randic index in terms of graph invariants such as the number of vertices and eigenvalues of graphs and improve some previously published lower bounds.


2008 ◽  
Vol 63 (5-6) ◽  
pp. 280-282 ◽  
Author(s):  
Ivan Gutman ◽  
Gopalapillai Indulal ◽  
Roberto Todeschinic

In 1971 McClelland obtained lower and upper bounds for the total π-electron energy. We now formulate the generalized version of these bounds, applicable to the energy-like expression EX = Σni =1 |xi − x̅|, where x1,x2, . . . ,xn are any real numbers, and x̅ is their arithmetic mean. In particular, if x1,x2, . . . ,xn are the eigenvalues of the adjacency, Laplacian, or distance matrix of some graph G, then EX is the graph energy, Laplacian energy, or distance energy, respectively, of G.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950001
Author(s):  
Igor Ž. Milovanović ◽  
Emina I. Milovanović ◽  
Marjan M. Matejić ◽  
Akbar Ali

Let [Formula: see text] be a simple graph of order [Formula: see text], without isolated vertices. Denote by [Formula: see text] the adjacency matrix of [Formula: see text]. Eigenvalues of the matrix [Formula: see text], [Formula: see text], form the spectrum of the graph [Formula: see text]. An important spectrum-based invariant is the graph energy, defined as [Formula: see text]. The determinant of the matrix [Formula: see text] can be calculated as [Formula: see text]. Recently, Altindag and Bozkurt [Lower bounds for the energy of (bipartite) graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 9–14] improved some well-known bounds on the graph energy. In this paper, several inequalities involving the graph invariants [Formula: see text] and [Formula: see text] are derived. Consequently, all the bounds established in the aforementioned paper are improved.


2013 ◽  
Vol 78 (12) ◽  
pp. 1925-1933 ◽  
Author(s):  
Ivan Gutman ◽  
Kinkar Das

The paper gives a short survey of the most important lower and upper bounds for total ?-electron energy, i.e., graph energy (E). In addition, a new lower and a new upper bound for E are deduced, valid for general molecular graphs. The strengthened versions of these estimates, valid for alternant conjugated hydrocarbons, are also reported.


2021 ◽  
Vol 69 (3) ◽  
pp. 551-561
Author(s):  
Ivan Gutman

Introduction/purpose: The Sombor matrix is a vertex-degree-based matrix associated with the Sombor index. The paper is concerned with the spectral properties of the Sombor matrix. Results: Equalities and inequalities for the eigenvalues of the Sombor matrix are obtained, from which two fundamental bounds for the Sombor energy (= energy of the Sombor matrix) are established. These bounds depend on the Sombor index and on the "forgotten" topological index. Conclusion: The results of the paper contribute to the spectral theory of the Sombor matrix, as well as to the general spectral theory of matrices associated with vertex-degree-based graph invariants.


2011 ◽  
Vol 2011 ◽  
pp. 1-7
Author(s):  
Ismael G. Yero ◽  
Juan A. Rodríguez-Velázquez

Let G be a graph with vertex set V=(v1,v2,…,vn). Let δ(vi) be the degree of the vertex vi∈V. If the vertices vi1,vi2,…,vih+1 form a path of length h≥1 in the graph G, then the hth order Randić index Rh of G is defined as the sum of the terms 1/δ(vi1)δ(vi2)⋯δ(vih+1) over all paths of length h contained (as subgraphs) in G. Lower and upper bounds for Rh, in terms of the vertex degree sequence of its factors, are obtained for corona product graphs. Moreover, closed formulas are obtained when the factors are regular graphs.


2020 ◽  
Vol 30 (03) ◽  
pp. 2040005
Author(s):  
Yingzhi Tian ◽  
Huaping Ma ◽  
Liyun Wu

In 1956, Nordhaus and Gaddum gave lower and upper bounds on the sum and the product of the chromatic number of a graph and its complement, in terms of the order of the graph. Since then, any bound on the sum and/or the product of an invariant in a graph [Formula: see text] and the same invariant in the complement [Formula: see text] of [Formula: see text] is called a Nordhaus-Gaddum type inequality or relation. The Nordhaus-Gaddum type inequalities for connectivity have been studied by several authors. For a bipartite graph [Formula: see text] with bipartition ([Formula: see text]), its bipartite complementary graph [Formula: see text] is a bipartite graph with [Formula: see text] and [Formula: see text] and [Formula: see text]. In this paper, we obtain the Nordhaus-Gaddum type inequalities for connectivity of bipartite graphs and its bipartite complementary graphs. Furthermore, we prove that these inequalities are best possible.


2021 ◽  
Vol 4 (1) ◽  
pp. 1-3
Author(s):  
Ivan Gutman ◽  

The recently introduced class of vertex-degree-based molecular structure descriptors, called Sombor indices (\(SO\)), are examined and a few of their basic properties established. Simple lower and upper bounds for \(SO\) are determined. It is shown that any vertex-degree-based descriptor can be viewed as a special case of a Sombor-type index.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1903
Author(s):  
Juan Monsalve ◽  
Juan Rada

A vertex-degree-based (VDB, for short) topological index φ induced by the numbers φij was recently defined for a digraph D, as φD=12∑uvφdu+dv−, where du+ denotes the out-degree of the vertex u,dv− denotes the in-degree of the vertex v, and the sum runs over the set of arcs uv of D. This definition generalizes the concept of a VDB topological index of a graph. In a general setting, we find sharp lower and upper bounds of a symmetric VDB topological index over Dn, the set of all digraphs with n non-isolated vertices. Applications to well-known topological indices are deduced. We also determine extremal values of symmetric VDB topological indices over OTn and OG, the set of oriented trees with n vertices, and the set of all orientations of a fixed graph G, respectively.


Sign in / Sign up

Export Citation Format

Share Document