scholarly journals Laplacian integral graphs with a given degree sequence constraint

2021 ◽  
Vol 40 (6) ◽  
pp. 1431-1448
Author(s):  
Ansderson Fernandes Novanta ◽  
Carla Silva Oliveira ◽  
Leonardo de Lima

Let G be a graph on n vertices. The Laplacian matrix of G, denoted by L(G), is defined as L(G) = D(G) −A(G), where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the vertex degrees of G. A graph G is said to be L-integral if all eigenvalues of the matrix L(G) are integers. In this paper, we characterize all Lintegral non-bipartite graphs among all connected graphs with at most two vertices of degree larger than or equal to three.

Author(s):  
Anderson Fernandes Novanta ◽  
Carla Silva Oliveira ◽  
Leonardo Silva de Lima

Let G be a graph on n vertices. The Laplacian matrix of G, denoted by L(G), is defined as L(G) = D(G) − A(G), where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the vertex degrees of G. A graph G is said to be L-integral is all eigenvalues of the matrix L(G) are integers. In this paper, we characterize all L-integral non-bipartite graphs among all connected graphs with at most two vertices of degree larger than or equal to three.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


2015 ◽  
Vol 30 ◽  
pp. 812-826
Author(s):  
Alexander Farrugia ◽  
Irene Sciriha

A universal adjacency matrix U of a graph G is a linear combination of the 0–1 adjacency matrix A, the diagonal matrix of vertex degrees D, the identity matrix I and the matrix J each of whose entries is 1. A main eigenvalue of U is an eigenvalue having an eigenvector that is not orthogonal to the all–ones vector. It is shown that the number of distinct main eigenvalues of U associated with a simple graph G is at most the number of orbits of any automorphism of G. The definition of a U–controllable graph is given using control–theoretic techniques and several necessary and sufficient conditions for a graph to be U–controllable are determined. It is then demonstrated that U–controllable graphs are asymmetric and that the converse is false, showing that there exist both regular and non–regular asymmetric graphs that are not U–controllable for any universal adjacency matrix U. To aid in the discovery of these counterexamples, a gamma–Laplacian matrix L(gamma) is used, which is a simplified form of U. It is proved that any U-controllable graph is a L(gamma)–controllable graph for some parameter gamma.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Akbar Jahanbani ◽  
Seyed Mahmoud Sheikholeslami ◽  
Rana Khoeilar

Let G be a simple graph of order n . The matrix ℒ G = D G − A G is called the Laplacian matrix of G , where D G and A G denote the diagonal matrix of vertex degrees and the adjacency matrix of G , respectively. Let l 1 G , l n − 1 G be the largest eigenvalue, the second smallest eigenvalue of ℒ G respectively, and λ 1 G be the largest eigenvalue of A G . In this paper, we will present sharp upper and lower bounds for l 1 G and l n − 1 G . Moreover, we investigate the relation between l 1 G and λ 1 G .


2020 ◽  
Vol 36 (36) ◽  
pp. 390-399
Author(s):  
Qiao Guo ◽  
Yaoping Hou ◽  
Deqiong Li

Let $\Gamma=(G,\sigma)$ be a signed graph and $L(\Gamma)=D(G)-A(\Gamma)$ be the Laplacian matrix of $\Gamma$, where $D(G)$ is the diagonal matrix of vertex degrees of the underlying graph $G$ and $A(\Gamma)$ is the adjacency matrix of $\Gamma$. It is well-known that the least Laplacian eigenvalue $\lambda_n$ is positive if and only if $\Gamma$ is unbalanced. In this paper, the unique signed graph (up to switching equivalence) which minimizes the least Laplacian eigenvalue among unbalanced connected signed unicyclic graphs with $n$ vertices and $k$ pendant vertices is characterized.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1668
Author(s):  
Eber Lenes ◽  
Exequiel Mallea-Zepeda ◽  
Jonnathan Rodríguez

Let G be a graph, for any real 0≤α≤1, Nikiforov defines the matrix Aα(G) as Aα(G)=αD(G)+(1−α)A(G), where A(G) and D(G) are the adjacency matrix and diagonal matrix of degrees of the vertices of G. This paper presents some extremal results about the spectral radius ρα(G) of the matrix Aα(G). In particular, we give a lower bound on the spectral radius ρα(G) in terms of order and independence number. In addition, we obtain an upper bound for the spectral radius ρα(G) in terms of order and minimal degree. Furthermore, for n>l>0 and 1≤p≤⌊n−l2⌋, let Gp≅Kl∨(Kp∪Kn−p−l) be the graph obtained from the graphs Kl and Kp∪Kn−p−l and edges connecting each vertex of Kl with every vertex of Kp∪Kn−p−l. We prove that ρα(Gp+1)<ρα(Gp) for 1≤p≤⌊n−l2⌋−1.


2017 ◽  
Vol 32 ◽  
pp. 217-231 ◽  
Author(s):  
SWARUP PANDA

A graph G is said to be nonsingular (resp., singular) if its adjacency matrix A(G) is nonsingular (resp., singular). The inverse of a nonsingular graph G is the unique weighted graph whose adjacency matrix is similar to the inverse of the adjacency matrix A(G) via a diagonal matrix of ±1s. Consider connected bipartite graphs with unique perfect matchings such that the graph obtained by contracting all matching edges is also bipartite. In [C.D. Godsil. Inverses of trees. Combinatorica, 5(1):33–39, 1985.], Godsil proved that such graphs are invertible. He posed the question of characterizing the bipartite graphs with unique perfect matchings possessing inverses. In this article, Godsil’s question for the class of bicyclic graphs is answered.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950001
Author(s):  
Igor Ž. Milovanović ◽  
Emina I. Milovanović ◽  
Marjan M. Matejić ◽  
Akbar Ali

Let [Formula: see text] be a simple graph of order [Formula: see text], without isolated vertices. Denote by [Formula: see text] the adjacency matrix of [Formula: see text]. Eigenvalues of the matrix [Formula: see text], [Formula: see text], form the spectrum of the graph [Formula: see text]. An important spectrum-based invariant is the graph energy, defined as [Formula: see text]. The determinant of the matrix [Formula: see text] can be calculated as [Formula: see text]. Recently, Altindag and Bozkurt [Lower bounds for the energy of (bipartite) graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 9–14] improved some well-known bounds on the graph energy. In this paper, several inequalities involving the graph invariants [Formula: see text] and [Formula: see text] are derived. Consequently, all the bounds established in the aforementioned paper are improved.


2021 ◽  
Vol 45 (02) ◽  
pp. 299-307
Author(s):  
HANYUAN DENG ◽  
TOMÁŠ VETRÍK ◽  
SELVARAJ BALACHANDRAN

The harmonic index of a conected graph G is defined as H(G) = ∑ uv∈E(G) 2 d(u)+d-(v), where E(G) is the edge set of G, d(u) and d(v) are the degrees of vertices u and v, respectively. The spectral radius of a square matrix M is the maximum among the absolute values of the eigenvalues of M. Let q(G) be the spectral radius of the signless Laplacian matrix Q(G) = D(G) + A(G), where D(G) is the diagonal matrix having degrees of the vertices on the main diagonal and A(G) is the (0, 1) adjacency matrix of G. The harmonic index of a graph G and the spectral radius of the matrix Q(G) have been extensively studied. We investigate the relationship between the harmonic index of a graph G and the spectral radius of the matrix Q(G). We prove that for a connected graph G with n vertices, we have ( 2 || ----n----- ||{ 2 (n − 1), if n ≥ 6, -q(G-)- ≤ | 16-, if n = 5, H (G ) || 5 |( 3, if n = 4, and the bounds are best possible.


10.37236/150 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Chai Wah Wu

Recently, Braunstein et al. introduced normalized Laplacian matrices of graphs as density matrices in quantum mechanics and studied the relationships between quantum physical properties and graph theoretical properties of the underlying graphs. We provide further results on the multipartite separability of Laplacian matrices of graphs. In particular, we identify complete bipartite graphs whose normalized Laplacian matrix is multipartite entangled under any vertex labeling. Furthermore, we give conditions on the vertex degrees such that there is a vertex labeling under which the normalized Laplacian matrix is entangled. These results address an open question raised in Braunstein et al. Finally, we show that the Laplacian matrix of any product of graphs (strong, Cartesian, tensor, lexicographical, etc.) is multipartite separable, extending analogous results for bipartite and tripartite separability.


Sign in / Sign up

Export Citation Format

Share Document