On generalized neighbor sum distinguishing index of planar graphs

Author(s):  
Jieru Feng ◽  
Yue Wang ◽  
Jianliang Wu

For a proper [Formula: see text]-edge coloring [Formula: see text] of a graph [Formula: see text], let [Formula: see text] denote the sum of the colors taken on the edges incident to the vertex [Formula: see text]. Given a positive integer [Formula: see text], the [Formula: see text]-neighbor sum distinguishing [Formula: see text]-edge coloring of G is [Formula: see text] such that for each edge [Formula: see text], [Formula: see text]. We denote the smallest integer [Formula: see text] in such coloring of [Formula: see text] by [Formula: see text]. For [Formula: see text], Wang et al. proved that [Formula: see text]. In this paper, we show that if G is a planar graph without isolated edges, then [Formula: see text], where [Formula: see text].

2020 ◽  
Vol 12 (04) ◽  
pp. 2050035
Author(s):  
Danjun Huang ◽  
Xiaoxiu Zhang ◽  
Weifan Wang ◽  
Stephen Finbow

The adjacent vertex distinguishing edge coloring of a graph [Formula: see text] is a proper edge coloring of [Formula: see text] such that the color sets of any pair of adjacent vertices are distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of [Formula: see text] is denoted by [Formula: see text]. It is observed that [Formula: see text] when [Formula: see text] contains two adjacent vertices of degree [Formula: see text]. In this paper, we prove that if [Formula: see text] is a planar graph without 3-cycles, then [Formula: see text]. Furthermore, we characterize the adjacent vertex distinguishing chromatic index for planar graphs of [Formula: see text] and without 3-cycles. This improves a result from [D. Huang, Z. Miao and W. Wang, Adjacent vertex distinguishing indices of planar graphs without 3-cycles, Discrete Math. 338 (2015) 139–148] that established [Formula: see text] for planar graphs without 3-cycles.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750013 ◽  
Author(s):  
Yuehua Bu ◽  
Hongguo Zhu

A strong[Formula: see text]-edge-coloring of a graph [Formula: see text] is a mapping [Formula: see text]: [Formula: see text], such that [Formula: see text] for every pair of distinct edges at distance at most two. The strong chromatical index of a graph [Formula: see text] is the least integer [Formula: see text] such that [Formula: see text] has a strong-[Formula: see text]-edge-coloring, denoted by [Formula: see text]. In this paper, we prove [Formula: see text] for any subcubic planar graph with [Formula: see text] and [Formula: see text]-cycles are not adjacent to [Formula: see text]-cycles.


10.37236/6738 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Hojin Choi ◽  
Young Soo Kwon

In this paper, we introduce a new variation of list-colorings. For a graph $G$  and for a given nonnegative integer $t$, a $t$-common list assignment of $G$ is a mapping $L$ which assigns each vertex $v$ a set $L(v)$ of colors such that given set of $t$ colors belong to $L(v)$ for every $v\in V(G)$. The $t$-common list chromatic number of $G$ denoted by $ch_t(G)$ is defined as the minimum positive integer $k$ such that there exists an $L$-coloring of $G$ for every $t$-common list assignment $L$ of $G$, satisfying $|L(v)| \ge k$ for every vertex $v\in V(G)$. We show that for all positive integers $k, \ell$ with $2 \le k \le \ell$ and for any positive integers $i_1 , i_2, \ldots, i_{k-2}$ with $k \le i_{k-2} \le \cdots \le i_1 \le \ell$, there exists a graph $G$ such that $\chi(G)= k$, $ch(G) =  \ell$ and $ch_t(G) = i_t$ for every $t=1, \ldots, k-2$. Moreover, we consider the $t$-common list chromatic number of planar graphs. From the four color theorem and the result of Thomassen (1994), for any $t=1$ or $2$, the sharp upper bound of $t$-common list chromatic number of planar graphs is $4$ or $5$. Our first step on $t$-common list chromatic number of planar graphs is to find such a sharp upper bound. By constructing a planar graph $G$ such that $ch_1(G) =5$, we show that the sharp upper bound for $1$-common list chromatic number of planar graphs is $5$. The sharp upper bound of $2$-common list chromatic number of planar graphs is still open. We also suggest several questions related to $t$-common list chromatic number of planar graphs.


10.37236/5390 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Philip DeOrsey ◽  
Michael Ferrara ◽  
Nathan Graber ◽  
Stephen G. Hartke ◽  
Luke L. Nelsen ◽  
...  

The strong chromatic index of a graph $G$, denoted $\chi'_s(G)$, is the least number of colors needed to edge-color $G$ so that edges at distance at most two receive distinct colors. The strong list chromatic index, denoted $\chi'_{s,\ell}(G)$, is the least integer $k$ such that if arbitrary lists of size $k$ are assigned to each edge then $G$ can be edge-colored from those lists where edges at distance at most two receive distinct colors.We use the discharging method, the Combinatorial Nullstellensatz, and computation to show that if $G$ is a subcubic planar graph with ${\rm girth}(G) \geq 41$ then $\chi'_{s,\ell}(G) \leq 5$, answering a question of Borodin and Ivanova [Precise upper bound for the strong edge chromatic number of sparse planar graphs, Discuss. Math. Graph Theory, 33(4), (2014) 759--770]. We further show that if $G$ is a subcubic planar graph and ${\rm girth}(G) \geq 30$, then $\chi_s'(G) \leq 5$, improving a bound from the same paper.Finally, if $G$ is a planar graph with maximum degree at most four and ${\rm girth}(G) \geq 28$, then $\chi'_s(G)N \leq 7$, improving a more general bound of Wang and Zhao from [Odd graphs and its applications to the strong edge coloring, Applied Mathematics and Computation, 325 (2018), 246-251] in this case.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950064
Author(s):  
Kai Lin ◽  
Min Chen ◽  
Dong Chen

Let [Formula: see text] be a graph. An [Formula: see text]-relaxed strong edge [Formula: see text]-coloring is a mapping [Formula: see text] such that for any edge [Formula: see text], there are at most [Formula: see text] edges adjacent to [Formula: see text] and [Formula: see text] edges which are distance two apart from [Formula: see text] assigned the same color as [Formula: see text]. The [Formula: see text]-relaxed strong chromatic index, denoted by [Formula: see text], is the minimum number [Formula: see text] of an [Formula: see text]-relaxed strong [Formula: see text]-edge-coloring admitted by [Formula: see text]. [Formula: see text] is called [Formula: see text]-relaxed strong edge [Formula: see text]-colorable if for a given list assignment [Formula: see text], there exists an [Formula: see text]-relaxed strong edge coloring [Formula: see text] of [Formula: see text] such that [Formula: see text] for all [Formula: see text]. If [Formula: see text] is [Formula: see text]-relaxed strong edge [Formula: see text]-colorable for any list assignment with [Formula: see text] for all [Formula: see text], then [Formula: see text] is said to be [Formula: see text]-relaxed strong edge [Formula: see text]-choosable. The [Formula: see text]-relaxed strong list chromatic index, denoted by [Formula: see text], is defined to be the smallest integer [Formula: see text] such that [Formula: see text] is [Formula: see text]-relaxed strong edge [Formula: see text]-choosable. In this paper, we prove that every planar graph [Formula: see text] with girth 6 satisfies that [Formula: see text]. This strengthens a result which says that every planar graph [Formula: see text] with girth 7 and [Formula: see text] satisfies that [Formula: see text].


Author(s):  
Qiaojun Shu ◽  
Yong Chen ◽  
Shuguang Han ◽  
Guohui Lin ◽  
Eiji Miyano ◽  
...  

2012 ◽  
Vol 04 (04) ◽  
pp. 1250047 ◽  
Author(s):  
AIJUN DONG ◽  
GUANGHUI WANG

A proper [k]-edge coloring of a graph G is a proper edge coloring of G using colors of the set [k] = {1, 2,…,k}. A neighbor sum distinguishing [k]-edge coloring of G is a proper [k]-edge coloring of G such that for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. By ndiΣ(G), we denote the smallest value k in such a coloring of G. In this paper, we obtain that (1) ndiΣ(G) ≤ max {2Δ(G) + 1, 25} if G is a planar graph, (2) ndiΣ(G) ≤ max {2Δ(G), 19} if G is a graph such that mad(G) ≤ 5.


1996 ◽  
Vol 05 (06) ◽  
pp. 877-883 ◽  
Author(s):  
KOUKI TANIYAMA ◽  
TATSUYA TSUKAMOTO

For each odd number n, we describe a regular projection of a planar graph such that every spatial graph obtained by giving it over/under information of crossing points contains a (2, n)-torus knot. We also show that for any spatial graph H, there is a regular projection of a (possibly nonplanar) graph such that every spatial graph obtained from it contains a subgraph that is ambient isotopic to H.


Sign in / Sign up

Export Citation Format

Share Document