scholarly journals Information Diffusion on Complex Networks: A Novel Approach Based on Topic Modeling and Pretopology Theory

2019 ◽  
Vol 06 (03) ◽  
pp. 285-309
Author(s):  
Thi Kim Thoa Ho ◽  
Quang Vu Bui ◽  
Marc Bui

In this research, we exploit a novel approach for propagation processes on a network related to textual information by using topic modeling and pretopology theory. We first introduce the textual agent’s network in which each agent represents a node which contains specific properties, particularly the agent’s interest. Agent’s interest is illustrated through the topic’s probability distribution which is estimated based on textual information using topic modeling. Based on textual agent’s network, we proposed two information diffusion models. The first model, namely Textual-Homo-IC, is an expanded model of independent cascade model in which the probability of infection is formed on homophily that is measured based on agent’s interest similarity. In addition to expressing the Textual-Homo-IC model on the static network, we also reveal it on dynamic agent’s network where there is transformation of not only the structure but also the node’s properties during the spreading process. We conducted experiments on two collected datasets from NIPS and a social network platform, Twitter, and have attained satisfactory results. On the other hand, we continue to exploit the dissemination process on a multi-relational agent’s network by integrating the pseudo-closure function from pretopology theory to the cascade model. By using pseudo-closure or stochastic pseudo-closure functions to define the set of neighbors, we can capture more complex kind of neighbors of a set. In this study, we propose the second model, namely Textual-Homo-PCM, an expanded model of pretopological cascade model, a general model for information diffusion process that can take place in more complex networks such as multi-relational networks or stochastic graphs. In Textual-Homo-PCM, pretopology theory will be applied to determine the neighborhood set on multi-relational agent’s network through pseudo-closure functions. Besides, threshold rule based on homophily will be used for activation. Experiments are implemented for simulating Textual-Homo-PCM and we obtained expected results. The work in this paper is an extended version of our paper [T. K. T. Ho, Q. V. Bui and M. Bui, Homophily independent cascade diffusion model based on textual information, in Computational Collective Intelligence, eds. N. T. Nguyen, E. Pimenidis, Z. Khan and B. Trawiski, Lecture Notes in Computer Science, Vol. 11055 (Springer International Publishing, 2018), pp. 134–145] presented in ICCCI 2018 conference.

2020 ◽  
Vol 12 (1) ◽  
pp. 5-21
Author(s):  
Péter Marjai ◽  
Attila Kiss

AbstractOne of the most studied aspect of complex graphs is identifying the most influential nodes. There are some local metrics like degree centrality, which is cost-effiective and easy to calculate, although using global metrics like betweenness centrality or closeness centrality can identify influential nodes more accurately, however calculating these values can be costly and each measure has it’s own limitations and disadvantages. There is an ever-growing interest in calculating such metrics in time-varying graphs (TVGs), since modern complex networks can be best modelled with such graphs. In this paper we are investigating the effectiveness of a new centrality measure called efficiency centrality in TVGs. To evaluate the performance of the algorithm Independent Cascade Model is used to simulate infection spreading in four real networks. To simulate the changes in the network we are deleting and adding nodes based on their degree centrality. We are investigating the Time-Constrained Coverage and the magnitude of propagation resulted by the use of the algorithm.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sima Ranjbari ◽  
Toktam Khatibi ◽  
Ahmad Vosough Dizaji ◽  
Hesamoddin Sajadi ◽  
Mehdi Totonchi ◽  
...  

Abstract Background Intrauterine Insemination (IUI) outcome prediction is a challenging issue which the assisted reproductive technology (ART) practitioners are dealing with. Predicting the success or failure of IUI based on the couples' features can assist the physicians to make the appropriate decision for suggesting IUI to the couples or not and/or continuing the treatment or not for them. Many previous studies have been focused on predicting the in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) outcome using machine learning algorithms. But, to the best of our knowledge, a few studies have been focused on predicting the outcome of IUI. The main aim of this study is to propose an automatic classification and feature scoring method to predict intrauterine insemination (IUI) outcome and ranking the most significant features. Methods For this purpose, a novel approach combining complex network-based feature engineering and stacked ensemble (CNFE-SE) is proposed. Three complex networks are extracted considering the patients' data similarities. The feature engineering step is performed on the complex networks. The original feature set and/or the features engineered are fed to the proposed stacked ensemble to classify and predict IUI outcome for couples per IUI treatment cycle. Our study is a retrospective study of a 5-year couples' data undergoing IUI. Data is collected from Reproductive Biomedicine Research Center, Royan Institute describing 11,255 IUI treatment cycles for 8,360 couples. Our dataset includes the couples' demographic characteristics, historical data about the patients' diseases, the clinical diagnosis, the treatment plans and the prescribed drugs during the cycles, semen quality, laboratory tests and the clinical pregnancy outcome. Results Experimental results show that the proposed method outperforms the compared methods with Area under receiver operating characteristics curve (AUC) of 0.84 ± 0.01, sensitivity of 0.79 ± 0.01, specificity of 0.91 ± 0.01, and accuracy of 0.85 ± 0.01 for the prediction of IUI outcome. Conclusions The most important predictors for predicting IUI outcome are semen parameters (sperm motility and concentration) as well as female body mass index (BMI).


2016 ◽  
Vol 651 ◽  
pp. 1-34 ◽  
Author(s):  
Zi-Ke Zhang ◽  
Chuang Liu ◽  
Xiu-Xiu Zhan ◽  
Xin Lu ◽  
Chu-Xu Zhang ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1216
Author(s):  
Jedidiah Yanez-Sierra ◽  
Arturo Diaz-Perez ◽  
Victor Sosa-Sosa

One of the main problems in graph analysis is the correct identification of relevant nodes for spreading processes. Spreaders are crucial for accelerating/hindering information diffusion, increasing product exposure, controlling diseases, rumors, and more. Correct identification of spreaders in graph analysis is a relevant task to optimally use the network structure and ensure a more efficient flow of information. Additionally, network topology has proven to play a relevant role in the spreading processes. In this sense, more of the existing methods based on local, global, or hybrid centrality measures only select relevant nodes based on their ranking values, but they do not intentionally focus on their distribution on the graph. In this paper, we propose a simple yet effective method that takes advantage of the underlying graph topology to guarantee that the selected nodes are not only relevant but also well-scattered. Our proposal also suggests how to define the number of spreaders to select. The approach is composed of two phases: first, graph partitioning; and second, identification and distribution of relevant nodes. We have tested our approach by applying the SIR spreading model over nine real complex networks. The experimental results showed more influential and scattered values for the set of relevant nodes identified by our approach than several reference algorithms, including degree, closeness, Betweenness, VoteRank, HybridRank, and IKS. The results further showed an improvement in the propagation influence value when combining our distribution strategy with classical metrics, such as degree, outperforming computationally more complex strategies. Moreover, our proposal shows a good computational complexity and can be applied to large-scale networks.


Sign in / Sign up

Export Citation Format

Share Document