Distributed Formation Control of UAVs for Circumnavigating a Moving Target in Three-Dimensional Space

2021 ◽  
Vol 01 (03) ◽  
Author(s):  
Yanhong Luo ◽  
Ao Bai ◽  
Huaguang Zhang

In this paper, a novel formation control strategy is proposed to address the target tracking and circumnavigating problem of multi-UAV formation. First, two sets of definitions, space angle definition and space vector definition, are presented in order to describe the flight state and construct the desired relative velocity. Then, the relative kinematic model between the UAV and the moving target is established. The distributed control law is constructed by using dynamic feedback linearization so as to realize the tracking and circumnavigating control with the desired velocity, circling radius and relative angular spacing. Next, the exponential stability of the closed-loop system is further guaranteed by properly choosing some corresponding parameters based on the Lyapunov method. Finally, the numerical simulation is carried out to verify the effectiveness of the proposed control method.

2019 ◽  
Vol 42 (3) ◽  
pp. 598-603
Author(s):  
Wei Liao ◽  
Xiaohui Wei ◽  
Jizhou Lai ◽  
Hao Sun

This paper presents a formation control method for multi unmanned aerial vehicles (UAVs) systems. The first step is to design two probability density functions describing to the desired formation and current formation, respectively. Then, through minimizing the Kullback-Leibler divergence, this method is able to bring the UAVs to a desired formation and stabilizes the desired formation in all initial conditions except the case where a pair of UAVs are in the same initial position. The gradient of Kullback-Leibler divergence is calculated using Monte Carlo method, by means of which it is not necessary to preplan route for every UAV and to take extra measure to avoid collisions between any two UAVs during the motion. At the end of this paper, the proposed method is adopted to carry out to some numerical simulations in a two-dimensional space and a three-dimensional space, respectively, to illustrate the effectiveness of the method. Conclusions show that the formation of the UAVs can converge to the desired formation under the control law proposed in this paper.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shanshan Du ◽  
Heping Chen ◽  
Yong Liu ◽  
Runting Hu

Currently, a bottleneck problem for battery-powered microflying robots is time of endurance. Inspired by flying animal behavior in nature, an innovative mechanism with active flying and perching in the three-dimensional space was proposed to greatly increase mission life and more importantly execute tasks perching on an object in the stationary way. In prior work, we have developed some prototypes of flying and perching robots. However, when the robots switch between flying and perching, it is a challenging issue to deal with the contact between the robot and environment under the traditional position control without considering the stationary obstacle and external force. Therefore, we propose a unified impedance control approach for bioinspired flying and perching robots to smoothly contact with the environment. The dynamic model of the bioinspired robot is deduced, and the proposed impedance control method is employed to control the contact force and displacement with the environment. Simulations including the top perching and side perching and the preliminary experiments were conducted to validate the proposed method. Both simulation and experimental results validate the feasibility of the proposed control methods for controlling a bioinspired flying and perching robot.


2011 ◽  
Vol 328-330 ◽  
pp. 1868-1871
Author(s):  
Bin Yang ◽  
Lin Ma

This paper detailedly illustrates how to design an anti-sway controller of overhead crane for eliminating pendulum of hook-headed. First of all the paper uses Lagrange Equation in analytical mechanics to obtain a mathematical model of crane motion system in three dimensional space. Then the paper advances a new control method and designs an anti-disturbance tracking controller based on servo-compensator and stabilization compensator for eliminating pendulum of hook-headed and accurately fixing position. In general, it is difficult to design an appropriate control law because of the crane motion system’s nonlinearity and strong coupling. However, the control method the paper put forward is simple and effective, and ensures the transient state performance of closed-loop system preferable and stable. The paper will introduce the design steps of anti-sway controller of overhead crane and give a satisfying simulation result, which are new and original in this paper.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1622-1625
Author(s):  
Lei Yan ◽  
Wei Ran Zhou

Spatial layout optimization is a core of existing barracks renewal. Distinguishing from new built barracks, existing barrack spatial layout optimization needs to pay more attention to solve the contradiction between current and future. So in this chapter, we develop six primary design keys applied to existing barracks including harmony relations between barrack and its surrounding environment, emphasis on weakness construction, optimize allocation, improve security defense capabilities, enhance artistry of spatial layout and realize the whole structure optimization. Reference to ancient classical fortification thoughts and current construction conditions, we also explore 5 tactics to optimize existing barracks spatial layout , namely, function integration method, node co-ordinate method, axis control method, three-dimensional space construction method, as well as idle land reuse method. Finally, we choose one tipical case to integrated apply the above keys and tactics from theoretical and practical fields promoting the sustainable development of existing barrack .


2015 ◽  
Vol 762 ◽  
pp. 249-254 ◽  
Author(s):  
Stelian Popa ◽  
Alexandru Dorin ◽  
Florin Adrian Nicolescu ◽  
Andrei Mario Ivan

This article follows a detailed description of development and validation for the direct kinematic model of six degrees of freedom articulated arm robot - Kawasaki FS10E model. The development of the kinematic model is based on widely used Denavit-Hartenberg notation, but, after the initial parameter identification, the mathematical algorithm itself follows an approach that uses the quaternion number system, taking advantage of their efficiency in describing spatial rotation - providing a convenient mathematical notation for expressing rotations and orientations of objects in three-dimensional space. The proposed algorithm concludes with two quaternion-based relations that express both the position of robot tool center point (TCP) position and end-effector orientation with respect to robot base coordinate system using Denavit-Hartenberg parameters and joint values as input data. Furthermore, the developed direct kinematic model was validated using the programming and offline simulation software Kawasaki PC Roset.


Sign in / Sign up

Export Citation Format

Share Document