Plasma Waves Excited by Modulated Line Sources below the Electron Cyclotron Frequency

1984 ◽  
Vol 23 (Part 2, No. 10) ◽  
pp. L765-L766
Author(s):  
Toshiro Ohnuma ◽  
Tsuguhiro Watanabe
2020 ◽  
Vol 246 (2) ◽  
pp. 21 ◽  
Author(s):  
David M. Malaspina ◽  
Jasper Halekas ◽  
Laura Berčič ◽  
Davin Larson ◽  
Phyllis Whittlesey ◽  
...  

2021 ◽  
Author(s):  
David Malaspina ◽  
Lynn Wilson ◽  
Robert Ergun ◽  
Stuart Bale ◽  
John Bonnell ◽  
...  

<p>Recent studies of the solar wind sunward of 0.25 AU using the Parker Solar Probe spacecraft reveal that that solar wind can be bimodal, alternating between near quiescent regions with low turbulent fluctuation amplitudes and Parker-like magnetic field direction and regions of highly turbulent plasma and magnetic field fluctuations associated with ‘switchbacks’ of the radial magnetic field.  </p><p>The quiescent solar wind regions are highly unstable to the formation of plasma waves near the electron cyclotron frequency (fce), possibly driven by strahl electrons, which carry the solar wind heat flux, and may provide one of the most direct particle diagnostics of the solar corona at the source of the solar wind.  These waves are most intense near ~0.7 fce and ~fce. The near-fce waves are found to become more intense and more frequent closer to the Sun, and statistical evidence indicates that their occurrence rate is related to the sunward drift of the core electron population.  </p><p>In this study, we examine high time resolution burst captures of these waves, demonstrating that each wave burst contains several distinct wave types, including electron Bernstein waves and extremely narrow band waves that are highly sensitive to the magnetic field orientation. Using properties of these waves we provide evidence to support the identification of their likely plasma wave modes and the instabilities responsible for generating these waves.  By understanding the driving instabilities responsible for these waves, we infer their ability to modify electron distribution functions in the quiescent near-Sun solar wind.  </p>


1986 ◽  
Vol 36 (3) ◽  
pp. 465-471 ◽  
Author(s):  
Kyoko Matsuda

Several branches of strongly damped electromagnetic hot plasma modes have been found around the first two harmonics of the electron cyclotron frequency. They are right circularly polarized in parallel propagation, and their frequency mismatches and damping rates are linearly proportional to their parallel wavenumber, and almost independent of the plasma density when the density is sufficiently high. Details of the modes are presented.


2005 ◽  
Vol 23 (8) ◽  
pp. 2937-2942 ◽  
Author(s):  
O. Santolík ◽  
E. Macúšová ◽  
K. H. Yearby ◽  
N. Cornilleau-Wehrlin ◽  
H. StC. K. Alleyne

Abstract. We use the first measurements of the STAFF/DWP instrument on the Double Star TC-1 spacecraft to investigate whistler-mode chorus. We present initial results of a systematic study on radial variation of dawn chorus. The chorus events show an increased intensity at L parameter above 6. This is important for the possible explanation of intensifications of chorus, which were previously observed closer to the Earth at higher latitudes. Our results also indicate that the upper band of chorus at frequencies above one-half of the electron cyclotron frequency disappears for L above 8. The lower band of chorus is observed at frequencies below 0.4 of the electron cyclotron frequency up to L of 11-12. The maxima of the chorus power spectra are found at slightly lower frequencies compared to previous studies. We do not observe any distinct evolution of the position of the chorus frequency band as a function of L. More data of the TC-1 spacecraft are needed to verify these initial results and to increase the MLT coverage.


1982 ◽  
Vol 28 (3) ◽  
pp. 503-525 ◽  
Author(s):  
H. K. Wong ◽  
C. S. Wu ◽  
F. J. Ke ◽  
R. S. Schneider ◽  
L. F. Ziebell

The amplification of fast extraordinary mode waves with frequencies very close to the electron cyclotron frequency is investigated for a plasma which consists of a weakly relativistic electron component with a loss-cone type distribution and a cold background electron component. The basic mechanism of the amplification is attributed to a relativistic cyclotron resonance between the wave and the energetic electrons. The method employed in the present analysis enables us to solve the dispersion relation in a self-consistent manner for arbitrary ratio of the densities of the energetic and background electrons. It is found that the maximum growth rates occur at certain values of ω2pe/Ω2e and the angular dependence of the growth rate is sensitive to the ratios ω2pe/Ω2e and ne/nb. Here ωpe and Ωe are the electron plasma frequency and the electron cyclotron frequency, respectively, and ne and nb denote the number densities of the energetic and background electrons, respectively.


Sign in / Sign up

Export Citation Format

Share Document