Monte Carlo Simulation of Grain Boundary Cross Effect on Hydrogen Diffusivity in Aluminum

1996 ◽  
Vol 35 (Part 1, No. 1A) ◽  
pp. 186-190 ◽  
Author(s):  
Minoru Ichimura ◽  
Yasushi Sasajima
2007 ◽  
Vol 129 ◽  
pp. 83-87
Author(s):  
Hua Long Li ◽  
Jong Tae Park ◽  
Jerzy A. Szpunar

Controlling texture and microstructure evolution during annealing processes is very important for optimizing properties of steels. Theories used to explain annealing processes are complicated and always case dependent. An recently developed Monte Carlo simulation based model offers an effective tool for studying annealing process and can be used to verify the arbitrarily defined theories that govern such processes. The computer model takes Orientation Image Microscope (OIM) measurements as an input. The abundant information contained in OIM measurement allows the computer model to incorporate many structural characteristics of polycrystalline materials such as, texture, grain boundary character, grain shape and size, phase composition, chemical composition, stored elastic energy, and the residual stress. The outputs include various texture functions, grain boundary and grain size statistics that can be verified by experimental results. Graphical representation allows us to perform virtual experiments to monitor each step of the structural transformation. An example of applying this simulation to Si steel is given.


2000 ◽  
Vol 44 (6) ◽  
pp. 319-324 ◽  
Author(s):  
Bingyao Jiang ◽  
Xianghuai Liu ◽  
L.P Zheng ◽  
D.X Li

2007 ◽  
Vol 558-559 ◽  
pp. 1057-1061 ◽  
Author(s):  
Abhijit P. Brahme ◽  
Joseph M. Fridy ◽  
Anthony D. Rollett

A model has been constructed for the microstructural evolution that occurs during the annealing of aluminum alloys. Geometric and crystallographic observations from two orthogonal sections through a polycrystal using automated Electron Back-Scatter Diffraction (EBSD) were used as an input to the computer simulations to create a statistically representative threedimensional model. The microstructure is generated using a voxel-based tessellation technique. Assignment of orientations to the grains is controlled to ensure that both texture and nearest neighbor relationships match the observed distributions. The microstructures thus obtained are allowed to evolve using a Monte-Carlo simulation. Anisotropic grain boundary properties are used in the simulations. Nucleation is done in accordance with experimental observations on the likelihood of occurrences in particular neighborhoods. We will present the effect of temperature on the model predictions.


Sign in / Sign up

Export Citation Format

Share Document