An orthogonal Relation for Electromagnetic Fields in Two-Dimensional Multilayered Dispersive Dielectric Medium Including Evanescent Fields

2000 ◽  
Vol 39 (Part 1, No. 8) ◽  
pp. 5019-5027 ◽  
Author(s):  
Jingbo Li ◽  
Masahiro Agu
Universe ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 88 ◽  
Author(s):  
Gary Gibbons ◽  
Marcus Werner

Electromagnetism in spacetime can be treated in terms of an analogue linear dielectric medium. In this paper, we discuss the gravitational analogue of the linear magnetoelectric effect, which can be found in multiferroic materials. While this is known to occur for metrics with non-zero mixed components, we show how it depends on the choice of spatial formalism for the electromagnetic fields, including differences in tensor weight, and also on the choice of coordinate chart. This is illustrated for Langevin–Minkowski, four charts of Schwarzschild spacetime, and two charts of pp gravitational waves.


2002 ◽  
Vol 17 (11) ◽  
pp. 1543-1558 ◽  
Author(s):  
P. PIWNICKI

Electromagnetism in an inhomogeneous dielectric medium at rest is described using the methods of differential geometry. In contrast to a general relativistic approach the electromagnetic fields are discussed in three-dimensional space only. The introduction of an appropriately chosen three-dimensional metric leads to a significant simplification of the description of light propagation in an inhomogeneous medium: light rays become geodesics of the metric and the field vectors are parallel transported along the rays. The new metric is connected to the usual flat space metric diag[1,1,1] via a conformal transformation leading to new, effective values of the medium parameters [Formula: see text] and [Formula: see text] with [Formula: see text]. The corresponding index of refraction is thus constant and so is the effective velocity of light. Space becomes effectively empty but curved. All deviations from straight-line propagation are now due to curvature. The approach is finally used for a discussion of the Riemann–Silberstein vector, an alternative, complex formulation of the electromagnetic fields.


Sign in / Sign up

Export Citation Format

Share Document