Effective Design and Performance of an Optical Flying Head for Near-Field Recording

2002 ◽  
Vol 41 (Part 1, No. 3B) ◽  
pp. 1884-1888 ◽  
Author(s):  
Sookyung Kim ◽  
Youngsik Kim ◽  
Jin-Moo Park ◽  
Jin-Yong Kim ◽  
Jin-Hong Kim
2002 ◽  
Vol 41 (Part 1, No. 11A) ◽  
pp. 6380-6385
Author(s):  
Hyeong Ryeol Oh ◽  
Dae-Gap Gweon ◽  
Jun-Hee Lee ◽  
Sang-Cheon Kim ◽  
See-Hyung Lee ◽  
...  

1992 ◽  
Vol 294 ◽  
Author(s):  
Ivars Neretnieks

ABSTRACTIn repositories for nuclear waste there are many processes that will be instrumental in damaging the canisters and releasing the nuclides. Based on experiences from studies of the performance of repositories and of an actual design, the major mechanisms influencing the integrity and performance of a repository are described and discussed. The paper addresses only conditions in crystalline rock repositories. The low water flow rate in fractures and channels plays a dominant role in limiting the interaction between water and waste. Molecular diffusion in the backfill and rock matrix, as well as in the mobile water, is an important transport process, but actually limits the exchange rate because diffusive transport is slow. Solubility limits of both waste matrix and of individual nuclides are also important. Complicating processes include alpha-radiolysis, which may change the water chemistry in the near-field. The sizes and locations of water flowpaths and damages in the canisters considerably influence the release rates. Uncertainties in data are large. Nevertheless the system is very robust in the sense that practically no reasonably conceivable assumptions or data will lead to large nuclide releases. Several natural analogues have been found to exhibit similarities with a waste repository and help to validate concepts and to increase our confidence that all major issues have been considered.


2004 ◽  
Vol 20 (3) ◽  
pp. 597-615 ◽  
Author(s):  
W. L. Ellsworth ◽  
M. Celebi ◽  
J. R. Evans ◽  
E. G. Jensen ◽  
R. Kayen ◽  
...  

A free-field recording of the Denali fault earthquake was obtained by the Alyeska Pipeline Service Company 3 km from the surface rupture of the Denali fault. The instrument, part of the monitoring and control system for the trans-Alaska pipeline, was located at Pump Station 10, approximately 85 km east of the epicenter. After correction for the measured instrument response, we recover a seismogram that includes a permanent displacement of 3.0 m. The recorded ground motion has relatively low peak acceleration (0.36 g) and very high peak velocity (180 cm/s). Nonlinear soil response may have reduced the peak acceleration to this 0.36 g value. Accelerations in excess of 0.1 g lasted for 10 s, with the most intense motion occurring during a 1.5-s interval when the rupture passed the site. The low acceleration and high velocity observed near the fault in this earthquake agree with observations from other recent large-magnitude earthquakes.


2012 ◽  
Vol 8 (4) ◽  
pp. 117 ◽  
Author(s):  
Luca Mainetti ◽  
Luigi Patrono ◽  
Roberto Vergallo

The evolution of modern mobile devices towards novel Radio Frequency (RF) capabilities, such as Near Field Communication, leads to a potential for delivering innovative mobile services, which is still partially unexplored. Mobile proximity payment systems are going to enhance the daily shopping experience, but the access to payment security resources of a mobile device (e.g. the “Secure Element”) by third party applications is still blocked by smartphone and Operating System manufacturers. In this paper, the IDA-Pay system is presented, an innovative and secure NFC micro-payment system based on Peer-to-Peer NFC operating mode for Android mobile phones. It allows to deliver mobile-to-POS micro-payment services, bypassing the need for special hardware. A validation scenario and a system evaluation are also reported to demonstrate the system effectiveness and performance.


Author(s):  
No-Cheol Park ◽  
Yoon-Chul Rhim ◽  
Kyoung-Su Park ◽  
Hyun-Seok Yang ◽  
Young-Pil Park ◽  
...  

2006 ◽  
Author(s):  
Jun-Hee Lee ◽  
Hyoung-Kil Yoon ◽  
Jaehwa Jeong ◽  
Dae-Gab Gweon ◽  
Wan-Doo Kim

2000 ◽  
Vol 39 (Part 1, No. 2B) ◽  
pp. 980-981 ◽  
Author(s):  
Hiroshi Fuji ◽  
Junji Tominaga ◽  
Liqiu Men ◽  
Takashi Nakano ◽  
Hiroyuki Katayama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document