Gold Seed Arrangement on Nanoporous Anodic Aluminum Oxide Membrane by Centrifugal Force

2005 ◽  
Vol 44 (7B) ◽  
pp. 5847-5850
Author(s):  
Fengmin Chu ◽  
Miyoko Tanaka ◽  
Masayuki Shimojo ◽  
Kotaro Kajikawa ◽  
Kazuo Furuya
Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 904 ◽  
Author(s):  
Yunhyun Lee ◽  
Hyun Jung Kim ◽  
Dong-Kwon Kim

In this study, reverse electrodialysis power generation using an anisotropic anodic aluminum oxide membrane with nanopores of two different pore diameters is proposed and experimentally investigated for the first time. A number of experiments were carried out for various combinations of concentrations to show that the anisotropic anodic aluminum oxide membrane is superior to the conventional isotropic membrane. As a result, the highest power density that was measured from the anisotropic membrane was 15.0 mW/m2, and it was 7.2 times higher than that from the isotropic membrane. The reasons why the anisotropic membrane is superior to the isotropic membrane are explained in detail. The experiments on the anisotropic membranes with various active layer lengths and pore diameters were also conducted for exploring the effects of these engineering parameters on the power generation performance. As a result, it was shown that the length of the active layer is a more important engineering parameter than the pore diameter of the active layer. Additionally, it was also shown that a low concentration solution should be brought into contact with the active layer side of the membrane whenever an anisotropic membrane is used for reverse electrodialysis.


2004 ◽  
Vol 16 (4) ◽  
pp. 682-687 ◽  
Author(s):  
Dmitri A. Brevnov ◽  
Marcos Barela ◽  
Menake E. Piyasena ◽  
Gabriel P. López ◽  
Plamen B. Atanassov

Author(s):  
Bao-Ying Lee ◽  
Ching-Wen Li ◽  
Gou-Jen Wang

This study aims to develop a long-acting and implantable drug release device that can well control the release rate and concentration of the loaded drug. The proposed long-acting and implantable drug release device consists of a tubular nanoporous anodic aluminum oxide (AAO) and the microporous chitosan/collagen composite encapsulated inside it. The nanopore size of the AAO tube can be arranged by the anodization parameters to adjust the release rate and concentration, while the microporous chitosan/collagen composite can provide the device with a long-acting release property. Fabrication results indicated that the AAO tube has a uniform pore arrangement with pore size around 50 nm. And the synthesized microporous chitosan/collagen composites composites containing 90% of chitosan had the highest moisture content; therefore were used as the drug carriers. Release experiments demonstrate that the proposed long-acting drug release device had released only less than 60% of the loading drug at the 16th release day.


RSC Advances ◽  
2016 ◽  
Vol 6 (72) ◽  
pp. 67992-67996 ◽  
Author(s):  
E. Choudhary ◽  
V. Szalai

Nanoporous anodic aluminum oxide (AAO) membranes are being used for an increasing number of applications.


Sign in / Sign up

Export Citation Format

Share Document