Analysis of Time-resolved Photoluminescence of InGaN Quantum Wells Using the Carrier Rate Equation

2010 ◽  
Vol 49 (11) ◽  
pp. 112402 ◽  
Author(s):  
Hyunsung Kim ◽  
Dong-Soo Shin ◽  
Han-Youl Ryu ◽  
Jong-In Shim
2003 ◽  
Vol 798 ◽  
Author(s):  
Z. Y. Xu ◽  
X. D. Luo ◽  
X. D. Yang ◽  
P. H. Tan ◽  
C. L. Yang ◽  
...  

ABSTRACTTaking advantages of short pulse excitation and time-resolved photoluminescence (PL), we have studied the exciton localization effect in a number of GaAsN alloys and GaAsN/GaAs quantum wells (QWs). In the PL spectra, an extra transition located at the higher energy side of the commonly reported N-related emissions is observed. By measuring PL dependence on temperature and excitation power along with PL dynamics study, the new PL peak has been identified as a transition of the band edge-related recombination in dilute GaAsN alloy and delocalized transition in QWs. Using selective excitation PL we further attribute the localized emission in QWs to the excitons localized at the GaAsN/GaAs interfaces. This interface-related exciton localization could be greatly reduced by a rapid thermal annealing.


2016 ◽  
Vol 55 (4) ◽  
Author(s):  
Kazimieras Nomeika ◽  
Mantas Dmukauskas ◽  
Ramūnas Aleksiejūnas ◽  
Patrik Ščajev ◽  
Saulius Miasojedovas ◽  
...  

Enhancement of internal quantum efficiency (IQE) in InGaN quantum wells by insertion of a superlattice interlayer and applying the pulsed growth regime is investigated by a set of time-resolved optical techniques. A threefold IQE increase was achieved in the structure with the superlattice. It was ascribed to the net effect of decreased internal electrical field due to lower strain and altered carrier localization conditions. Pulsed MOCVD growth also resulted in twice higher IQE, presumably due to better control of defects in the structure. An LED (light emitting diode) structure with a top p-type contact GaN layer was manufactured by using both growth techniques with the peak IQE equal to that in the underlying quantum well structure. The linear recombination coefficient was found to gradually increase with excitation due to carrier delocalization, and the latter dependence was successfully used to fit the IQE droop.


2010 ◽  
Vol 16 (S2) ◽  
pp. 812-813
Author(s):  
J Christen ◽  
F Bertram ◽  
S Metzner ◽  
T Wunderer ◽  
F Lipski ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


2014 ◽  
Vol 104 (25) ◽  
pp. 252406
Author(s):  
Tetsu Ito ◽  
Hideki Gotoh ◽  
Masao Ichida ◽  
Hiroaki Ando

1997 ◽  
Vol 3 (3) ◽  
pp. 731-738 ◽  
Author(s):  
Chi-Kuang Sun ◽  
S. Keller ◽  
Tien-Lung Chiu ◽  
G. Wang ◽  
M.S. Minsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document