exciton localization
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 26)

H-INDEX

34
(FIVE YEARS 4)

APL Materials ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 121106
Author(s):  
Munetaka Arita ◽  
Taichi Iki ◽  
Mark J. Holmes ◽  
Yasuhiko Arakawa

2021 ◽  
Author(s):  
Tomohiko Nishiuchi ◽  
Hikaru Sotome ◽  
Kazuto Shimizu ◽  
Hiroshi Miyasaka ◽  
Takashi Kubo

We report the Negishi coupling based synthesis of 1,2,3-tri(9-anthryl)benzene derivatives, containing three radially arranged anthracenes in a π-cluster. In the crystalline state of the unsubstituted derivative, intermolecular π-π and CH-π interactions between the anthracene units drive the formation of a two-dimensional packing structure. Owing to though-space π-conjugation between anthracene units, the substances have unique electronic properties. The excited state dynamic behavior occurring between the three radially arranged anthracene moieties, such as exciton localization/delocalization, was elucidated by means of transient absorption measurements and quantum chemical calculations. Interestingly, even though the three anthracenes are closely oriented with a ca. 3.0 Å distances between their C-9 positions, exciton localization on two anthracene units is energetically favorable because of the flexible nature of the radially arranged aromatic rings.


eLight ◽  
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Pengfei Qi ◽  
Yang Luo ◽  
Beibei Shi ◽  
Wei Li ◽  
Donglin Liu ◽  
...  

AbstractTwo dimensional excitonic devices are of great potential to overcome the dilemma of response time and integration in current generation of electron or/and photon based systems. The ultrashort diffusion length of exciton arising from ultrafast relaxation and low carrier mobility greatly discounts the performance of excitonic devices. Phonon scattering and exciton localization are crucial to understand the modulation of exciton flux in two dimensional disorder energy landscape, which still remain elusive. Here, we report an optimized scheme for exciton diffusion and relaxation dominated by phonon scattering and disorder potentials in WSe2 monolayers. The effective diffusion coefficient is enhanced by > 200% at 280 K. The excitons tend to be localized by disorder potentials accompanied by the steadily weakening of phonon scattering when temperature drops to 260 K, and the onset of exciton localization brings forward as decreasing temperature. These findings identify that phonon scattering and disorder potentials are of great importance for long-range exciton diffusion and thermal management in exciton based systems, and lay a firm foundation for the development of functional excitonic devices.


2021 ◽  
Author(s):  
Ting Zheng ◽  
Xianghong Niu ◽  
Hui Zhao ◽  
Jinlan Wang ◽  
weiwei zhao ◽  
...  

2021 ◽  
Author(s):  
James Green ◽  
Martha Yaghoubi Jouybari ◽  
Haritha Asha ◽  
Fabrizio Santoro ◽  
Roberto Improta

<div>We introduce a method (FrD-LVC) based on a fragment diabatization (FrD) for the parametrization of a Linear Vibronic Coupling (LVC) model suitable for studying the photophysics of multichromophore systems. In combination with effective quantum dynamics (QD) propagations with multilayer multiconfigurational time-dependent Hartree (ML-MCTDH), the FrD-LVC approach gives access to the study of the competition between intra-chromophore decays, like those at conical intersections, and inter-chromophore processes, like exciton localization/delocalization and the involvement of charge transfer (CT) states. We used FrD-LVC parametrized with TD-DFT calculations, adopting either CAM-B3LYP or ωB97X-D functionals, to study the ultrafast photoexcited QD of a Guanine-Cytosine (GC) hydrogen bonded pair, within a Watson-Crick arrangement, considering up to 12 coupled diabatic electronic states and the effect of all the 99 vibrational coordinates. The bright excited states localized on C and, especially, on G are predicted to be strongly coupled to the G->C CT state which is efficiently and quickly populated after an excitation to any of the four lowest energy bright local excited states. Our QD simulations show that more than 80% of the excited population on G and ~50% of that on C decays to this CT state in less than 50 fs. We investigate the role of vibronic effects in the population of the CT state and show it depends mainly on its large reorganization energy so that it can occur even when it is significantly less stable than the bright states in the Franck-Condon region. At the same time, we document that the formation of the GC pair almost suppresses the involvement of dark nπ* excited states in the photoactivated dynamics.</div>


2021 ◽  
Author(s):  
James Green ◽  
Martha Yaghoubi Jouybari ◽  
Haritha Asha ◽  
Fabrizio Santoro ◽  
Roberto Improta

<div>We introduce a method (FrD-LVC) based on a fragment diabatization (FrD) for the parametrization of a Linear Vibronic Coupling (LVC) model suitable for studying the photophysics of multichromophore systems. In combination with effective quantum dynamics (QD) propagations with multilayer multiconfigurational time-dependent Hartree (ML-MCTDH), the FrD-LVC approach gives access to the study of the competition between intra-chromophore decays, like those at conical intersections, and inter-chromophore processes, like exciton localization/delocalization and the involvement of charge transfer (CT) states. We used FrD-LVC parametrized with TD-DFT calculations, adopting either CAM-B3LYP or ωB97X-D functionals, to study the ultrafast photoexcited QD of a Guanine-Cytosine (GC) hydrogen bonded pair, within a Watson-Crick arrangement, considering up to 12 coupled diabatic electronic states and the effect of all the 99 vibrational coordinates. The bright excited states localized on C and, especially, on G are predicted to be strongly coupled to the G->C CT state which is efficiently and quickly populated after an excitation to any of the four lowest energy bright local excited states. Our QD simulations show that more than 80% of the excited population on G and ~50% of that on C decays to this CT state in less than 50 fs. We investigate the role of vibronic effects in the population of the CT state and show it depends mainly on its large reorganization energy so that it can occur even when it is significantly less stable than the bright states in the Franck-Condon region. At the same time, we document that the formation of the GC pair almost suppresses the involvement of dark nπ* excited states in the photoactivated dynamics.</div>


Sign in / Sign up

Export Citation Format

Share Document