Drift Wave Instability in the Presense of an RF-Field in a Magnetized Plasma

1983 ◽  
Vol 52 (2) ◽  
pp. 492-500 ◽  
Author(s):  
Alexander J. Anastassiades ◽  
Constantine L. Xaplanteris
2020 ◽  
Vol 86 (4) ◽  
Author(s):  
Hongxuan Zhu ◽  
Yao Zhou ◽  
I. Y. Dodin

The Dimits shift is the shift between the threshold of the drift-wave primary instability and the actual onset of turbulent transport in a magnetized plasma. It is generally attributed to the suppression of turbulence by zonal flows, but developing a more detailed understanding calls for consideration of specific reduced models. The modified Terry–Horton system has been proposed by St-Onge (J. Plasma Phys., vol. 83, 2017, 905830504) as a minimal model capturing the Dimits shift. Here, we use this model to develop an analytic theory of the Dimits shift and a related theory of the tertiary instability of zonal flows. We show that tertiary modes are localized near extrema of the zonal velocity $U(x)$ , where $x$ is the radial coordinate. By approximating $U(x)$ with a parabola, we derive the tertiary-instability growth rate using two different methods and show that the tertiary instability is essentially the primary drift-wave instability modified by the local $U'' \doteq {\rm d}^2 U/{\rm d} x^2 $ . Then, depending on $U''$ , the tertiary instability can be suppressed or unleashed. The former corresponds to the case when zonal flows are strong enough to suppress turbulence (Dimits regime), while the latter corresponds to the case when zonal flows are unstable and turbulence develops. This understanding is different from the traditional paradigm that turbulence is controlled by the flow shear $| {\rm d} U / {\rm d} x |$ . Our analytic predictions are in agreement with direct numerical simulations of the modified Terry–Horton system.


2012 ◽  
Vol 376 (12-13) ◽  
pp. 1129-1131 ◽  
Author(s):  
P.K. Shukla ◽  
M. Rosenberg
Keyword(s):  

2018 ◽  
Vol 84 (3) ◽  
Author(s):  
Michael Barnes ◽  
P. Abiuso ◽  
W. Dorland

Observational evidence in space and astrophysical plasmas with a long collisional mean free path suggests that more massive charged particles may be preferentially heated. One possible mechanism for this is the turbulent cascade of energy from injection to dissipation scales, where the energy is converted to heat. Here we consider a simple system consisting of a magnetized plasma slab of electrons and a single ion species with a cross-field density gradient. We show that such a system is subject to an electron drift wave instability, known as the universal instability, which is stabilized only when the electron and ion thermal speeds are equal. For unequal thermal speeds, we find from quasilinear analysis and nonlinear simulations that the instability gives rise to turbulent energy exchange between ions and electrons that acts to equalize the thermal speeds. Consequently, this turbulent heating tends to equalize the component temperatures of pair plasmas and to heat ions to much higher temperatures than electrons for conventional mass-ratio plasmas.


1970 ◽  
Vol 25 (25) ◽  
pp. 1706-1709 ◽  
Author(s):  
Chuan Sheng Liu ◽  
Dilip K. Bhadra

2003 ◽  
Vol 43 (10) ◽  
pp. 1135-1139
Author(s):  
Robert Moestam ◽  
Jan Weiland

Sign in / Sign up

Export Citation Format

Share Document