scholarly journals Contributions to Statistical Mechanics Far from Equilibrium. III: Non-Perturbative Method for Steady States

1974 ◽  
Vol 52 (5) ◽  
pp. 1527-1538 ◽  
Author(s):  
K. Kawasaki
Author(s):  
Adrian F. Tuck

The Earth’s atmosphere is far from equilibrium; it is constantly in motion from the combined effects of gravity and planetary rotation, is constantly absorbing and emitting radiation, and hosts ongoing chemical reactions which are ultimately fuelled by solar photons. It has fluxes of material and energy across its boundaries with the planetary surface, both terrestrial and marine, and also emits a continual outward flux of infrared photons to space. The gaseous atmosphere is manifestly a kinetic system, meaning that its evolution must be described by time dependent differential equations. The equations doing this under the continuum fluid approximation are the Navier–Stokes equations, which are not analytically solvable and which support many non-linear instabilities. We have also seen that the generation of turbulence is a fundamentally difficult yet central feature of air motion, originating on the molecular scale. Non-equilibrium statistical mechanics may offer insight into which steady states a system far from equilibrium as a result of fluxes and anisotropies may migrate, without the need for detailed solution of the explicit path between the states. However, it does not seem possible to demonstrate mathematically that such steady states exist for the atmosphere. A physical view of the planet’s past and probable future suggests that the past and future evolution of the sun and its outgoing fluxes of energy may mean that the air-water-earth system may never have been or will ever be in a rigorously defined steady state. Also, to the human population, the detailed, time-dependent evolution is what matters in many respects. Nevertheless, non-equilibrium statistical mechanics is a discipline which should be applicable in principle to yield information about approximate steady states. These steady states may as a practical matter be definable from the observational record, for example the ice ages and the intervening periods evident in the geological record, or between states with two differing global average abundances of a radiatively active gas such as carbon dioxide. There has been great progress recently in non-equilibrium statistical mechanics, stemming from recent work on the concept of the maximization of entropy production.


Author(s):  
Nigel Goldenfeld ◽  
Tommaso Biancalani ◽  
Farshid Jafarpour

All known life on the Earth exhibits at least two non-trivial common features: the canonical genetic code and biological homochirality, both of which emerged prior to the Last Universal Common Ancestor state. This article describes recent efforts to provide a narrative of this epoch using tools from statistical mechanics. During the emergence of self-replicating life far from equilibrium in a period of chemical evolution, minimal models of autocatalysis show that homochirality would have necessarily co-evolved along with the efficiency of early-life self-replicators. Dynamical system models of the evolution of the genetic code must explain its universality and its highly refined error-minimization properties. These have both been accounted for in a scenario where life arose from a collective, networked phase where there was no notion of species and perhaps even individuality itself. We show how this phase ultimately terminated during an event sometimes known as the Darwinian transition, leading to the present epoch of tree-like vertical descent of organismal lineages. These examples illustrate concrete examples of universal biology: the quest for a fundamental understanding of the basic properties of living systems, independent of precise instantiation in chemistry or other media. This article is part of the themed issue ‘Reconceptualizing the origins of life’.


Non-equilibrium phase transitions in semiconductors due to impact ionization from traps have been obtained theoretically, and are discussed in detail. They include first and second order phase transitions, and develop previous work, which was restricted to second order phase transitions involving band-band processes. The models include switching transitions from non-conducting to conducting states, and from n- to p-type states. They furnish simple illustrations of the general principle that a system which is driven far from equilibrium can exhibit new stable steady states.


1991 ◽  
Vol 67 (19) ◽  
pp. 2597-2600 ◽  
Author(s):  
Denis J. Evans ◽  
András Baranyai

Sign in / Sign up

Export Citation Format

Share Document