scholarly journals Theory of Measurement of Quantum Mechanics: Mechanism of Reduction of Wave Packet. I

1980 ◽  
Vol 63 (5) ◽  
pp. 1457-1473 ◽  
Author(s):  
S. Machida ◽  
M. Namiki
1998 ◽  
Vol 13 (05) ◽  
pp. 347-351 ◽  
Author(s):  
MURAT ÖZER

We attempt to treat the very early Universe according to quantum mechanics. Identifying the scale factor of the Universe with the width of the wave packet associated with it, we show that there cannot be an initial singularity and that the Universe expands. Invoking the correspondence principle, we obtain the scale factor of the Universe and demonstrate that the causality problem of the standard model is solved.


2020 ◽  
Vol 2 (4) ◽  
pp. 600-616
Author(s):  
Andrea Oldofredi

It is generally accepted that quantum mechanics entails a revision of the classical propositional calculus as a consequence of its physical content. However, the universal claim according to which a new quantum logic is indispensable in order to model the propositions of every quantum theory is challenged. In the present essay, we critically discuss this claim by showing that classical logic can be rehabilitated in a quantum context by taking into account Bohmian mechanics. It will be argued, indeed, that such a theoretical framework provides the necessary conceptual tools to reintroduce a classical logic of experimental propositions by virtue of its clear metaphysical picture and its theory of measurement. More precisely, it will be shown that the rehabilitation of a classical propositional calculus is a consequence of the primitive ontology of the theory, a fact that is not yet sufficiently recognized in the literature concerning Bohmian mechanics. This work aims to fill this gap.


Author(s):  
Lloyd N Trefethen

The pseudospectra of non-selfadjoint linear ordinary differential operators with variable coefficients are considered. It is shown that when a certain winding number or twist condition is satisfied, closely related to Hörmander's commutator condition for partial differential equations, ϵ -pseudoeigenfunctions of such operators for exponentially small values of ϵ exist in the form of localized wave packets. In contrast to related results of Davies and of Dencker, Sjöstrand & Zworski, the symbol need not be smooth. Applications in fluid mechanics, non-hermitian quantum mechanics and other areas are presented with the aid of high-accuracy numerical computations.


2014 ◽  
Vol 29 (06) ◽  
pp. 1450036 ◽  
Author(s):  
M. Bauer

A self-adjoint dynamical time operator is introduced in Dirac's relativistic formulation of quantum mechanics and shown to satisfy a commutation relation with the Hamiltonian analogous to that of the position and momentum operators. The ensuing time-energy uncertainty relation involves the uncertainty in the instant of time when the wave packet passes a particular spatial position and the energy uncertainty associated with the wave packet at the same time, as envisaged originally by Bohr. The instantaneous rate of change of the position expectation value with respect to the simultaneous expectation value of the dynamical time operator is shown to be the phase velocity, in agreement with de Broglie's hypothesis of a particle associated wave whose phase velocity is larger than c. Thus, these two elements of the original basis and interpretation of quantum mechanics are integrated into its formal mathematical structure. Pauli's objection is shown to be resolved or circumvented. Possible relevance to current developments in electron channeling, in interference in time, in Zitterbewegung-like effects in spintronics, graphene and superconducting systems and in cosmology is noted.


Sign in / Sign up

Export Citation Format

Share Document