Quantum mechanics of the de Broglie wave packet and a review of inelastic losses of UCN in bottles

Author(s):  
V.K Ignatovich ◽  
Masahiko Utsuro
1998 ◽  
Vol 13 (05) ◽  
pp. 347-351 ◽  
Author(s):  
MURAT ÖZER

We attempt to treat the very early Universe according to quantum mechanics. Identifying the scale factor of the Universe with the width of the wave packet associated with it, we show that there cannot be an initial singularity and that the Universe expands. Invoking the correspondence principle, we obtain the scale factor of the Universe and demonstrate that the causality problem of the standard model is solved.


2020 ◽  
Vol 25 (10) ◽  
pp. 1763-1777
Author(s):  
James M Hill

The existence of the so-called ‘dark’ issues of mechanics implies that our present accounting for mass and energy is incorrect in terms of applicability on a cosmological scale, and the question arises as to where the difficulty might lie. The phenomenon of quantum entanglement indicates that systems of particles exist that individually display certain characteristics, while collectively the same characteristic is absent simply because it has cancelled out between individual particles. It may therefore be necessary to develop theoretical frameworks in which long-held conservation beliefs do not necessarily always apply. The present paper summarises the formulation described in earlier papers (Hill, JM. On the formal origin of dark energy. Z Angew Math Phys 2018; 69:133-145; Hill, JM. Some further comments on special relativity and dark energy. Z Angew Math Phys 2019; 70: 5–14; Hill, JM. Special relativity, de Broglie waves, dark energy and quantum mechanics. Z Angew Math Phys 2019; 70: 131–153.), which provides a framework that allows exceptions to the law that matter cannot be created or destroyed. In these papers, it is proposed that dark energy arises from conventional mechanical theory, neglecting the work done in the direction of time and consequently neglecting the de Broglie wave energy [Formula: see text]. These papers develop expressions for the de Broglie wave energy [Formula: see text] by making a distinction between particle energy [Formula: see text] and the total work done by the particle [Formula: see text], that which accumulates from both a spatial physical force [Formula: see text] and a force [Formula: see text] in the direction of time. In any experiment, either particles or de Broglie waves are reported, so that only one of [Formula: see text] or [Formula: see text] is physically measured, and particles appear for [Formula: see text] and de Broglie waves occur for [Formula: see text], but in either event both a measurable and an immeasurable energy exists. Conventional quantum mechanics operates under circumstances such that [Formula: see text] vanishes and [Formula: see text] becomes purely imaginary. If both [Formula: see text] and [Formula: see text] are generated as the gradient of a potential, the total particle energy is necessarily conserved in the conventional manner.


Author(s):  
Lloyd N Trefethen

The pseudospectra of non-selfadjoint linear ordinary differential operators with variable coefficients are considered. It is shown that when a certain winding number or twist condition is satisfied, closely related to Hörmander's commutator condition for partial differential equations, ϵ -pseudoeigenfunctions of such operators for exponentially small values of ϵ exist in the form of localized wave packets. In contrast to related results of Davies and of Dencker, Sjöstrand & Zworski, the symbol need not be smooth. Applications in fluid mechanics, non-hermitian quantum mechanics and other areas are presented with the aid of high-accuracy numerical computations.


1998 ◽  
Vol 246 (1-2) ◽  
pp. 7-15 ◽  
Author(s):  
Masahiko Utsuro ◽  
V.K. Ignatovich

2014 ◽  
Vol 29 (06) ◽  
pp. 1450036 ◽  
Author(s):  
M. Bauer

A self-adjoint dynamical time operator is introduced in Dirac's relativistic formulation of quantum mechanics and shown to satisfy a commutation relation with the Hamiltonian analogous to that of the position and momentum operators. The ensuing time-energy uncertainty relation involves the uncertainty in the instant of time when the wave packet passes a particular spatial position and the energy uncertainty associated with the wave packet at the same time, as envisaged originally by Bohr. The instantaneous rate of change of the position expectation value with respect to the simultaneous expectation value of the dynamical time operator is shown to be the phase velocity, in agreement with de Broglie's hypothesis of a particle associated wave whose phase velocity is larger than c. Thus, these two elements of the original basis and interpretation of quantum mechanics are integrated into its formal mathematical structure. Pauli's objection is shown to be resolved or circumvented. Possible relevance to current developments in electron channeling, in interference in time, in Zitterbewegung-like effects in spintronics, graphene and superconducting systems and in cosmology is noted.


1981 ◽  
Vol 31 (2) ◽  
pp. 37-38 ◽  
Author(s):  
L. Mackinnon

Sign in / Sign up

Export Citation Format

Share Document