Sedimentary evolution of an Upper Jurassic epeiric carbonate ramp, Iberian Basin, NE Spain

2010 ◽  
Vol 329 (1) ◽  
pp. 89-111 ◽  
Author(s):  
M. Aurell ◽  
B. Bádenas ◽  
J. Ipas ◽  
J. Ramajo
2016 ◽  
Vol 70 ◽  
pp. 201-221 ◽  
Author(s):  
L.M. Kleipool ◽  
J.J.G. Reijmer ◽  
N.J. Hardebol ◽  
G. Bertotti ◽  
M. Aurell ◽  
...  

2012 ◽  
Vol 271-272 ◽  
pp. 44-57 ◽  
Author(s):  
Beatriz Bádenas ◽  
Luis Pomar ◽  
Marc Aurell ◽  
Michele Morsilli

2013 ◽  
Vol 44 ◽  
pp. 140-163 ◽  
Author(s):  
Mahmoud H. Alnazghah ◽  
Beatriz Bádenas ◽  
Luis Pomar ◽  
Marcos Aurell ◽  
Michele Morsilli

2021 ◽  
Vol 36 (3) ◽  
Author(s):  
Malik Muhammad Saud Sajid Khan ◽  
Qasim Ali Jadoon ◽  
Muhammad Umar ◽  
Ahsan Ali Khan

2004 ◽  
Vol 141 (6) ◽  
pp. 717-733 ◽  
Author(s):  
M. AURELL ◽  
B. BÁDENAS

The outcrops of the Sierra de Albarracín (NE Spain) allow a precise reconstruction of the shallow sedimentary domains of a late Kimmeridgian carbonate ramp, developed in western marginal areas of the Iberian Basin. The sedimentary record shows a hierarchical sequence stratigraphic organization, which implies sea-level changes of different frequencies. The studied succession is arranged in a long-term transgressive–regressive sequence, which is likely to reflect local variation in the subsidence rates. This sequence includes four higher-order sequences A to D, which have variable thickness (from 3 to 21 m). The similar sedimentary evolution observed in distant localities suggests the existence of high-frequency sea-level fluctuations controlling the sequence development. The average amplitude of these cycles would range from 5 to 10 m. The precise estimation of their duration (some few hundreds of kyr) and their possible assignment to any of the long-term orbital cycles (the 100 or the 400 kyr eccentricity cycles) is uncertain. Sequences A and B, formed during the long-term transgressive interval, are relatively thin (from 3 to 9 m) give-up sequences that were never subaerially exposed. These sequences are locally formed by five shallowing-upward elementary sequences. Sequences C and D are catch-down sequences with evidence of emersion of subtidal facies. Sequence C, formed during the stage of maximum gain of long-term accommodation, is the thickest sequence (from 13 to 21 m) and includes coral–microbial reefs (pinnacles up to 16 m in height). The increased production rates were able to fill part of the accommodation created during the early stage of high-frequency sea-level rise and the shallow platform was eventually exposed to subaereal erosion and meteoric cementation.


2021 ◽  
Vol 19 ◽  
Author(s):  
Cristina Sequero ◽  
Giovanna Della Porta ◽  
Beatriz Bádenas ◽  
Marcos Aurell

Bulk carbon and oxygen stable isotopes of ancient shallow-marine carbonates can record the effects of multiple palaeoenvironmental factors, but also the imprint of several post-depositional processes, which may alter the original marine isotopic composition. In this study, carbon and oxygen stable isotope analyses were performed on bulk carbonate, bivalve calcitic-shell (Trichites) and calcite vein samples from two stratigraphic sections (Tosos and Fuendetodos, present-day distance 15km), representing proximal inner- and distal mid-ramp environments, respectively, of the uppermost Kimmeridgian ramp facies deposited in the northern Iberian Basin (NE Spain). These successions underwent different diagenetic pathways that altered the primary marine isotopic composition in each section in different ways. Different burial histories, tectonic uplift and a variable exposure to meteoric diagenesis from the end of the Kimmeridgian to the Cenozoic (following Alpine tectonic uplift) are reflected in the different alteration patterns of the carbon and oxygen stable isotope signatures. A significant deviation to lower values in both δ13O and δ18O is recorded in those carbonates mostly exposed to meteoric diagenesis (distal mid-ramp Fuendetodos section), because of post-depositional tectonic uplift (telogenesis). On the other hand, the deposits mainly affected by burial diagenesis (proximal inner-ramp Tosos section) only record low δ18O with respect to expected values for pristine Kimmeridgian marine carbonates. The different burial and tectonic uplift histories of these deposits in each sector, due to their different tectonic evolution in this part of the basin, resulted in a variable degree of diagenetic resetting. However, in spite of the different diagenetic resetting reported of the carbon and oxygen stable isotope signatures in each section, these carbonates show similar cement types in termsof fabrics and cathodoluminescence properties. The diagenetic resetting reported for these carbonates prevents the use of the δ13O and δ18O records for addressing palaeoenvironmental interpretations, but instead highlights useful features regarding the variable diagenetic overprint of the studied shallow-marine carbonate successions concerning their specific post-depositional history.


Sign in / Sign up

Export Citation Format

Share Document