Scalable security for large, high performance storage systems

Author(s):  
Andrew W. Leung ◽  
Ethan L. Miller
2021 ◽  
Vol 13 (16) ◽  
pp. 8789
Author(s):  
Giovanni Bianco ◽  
Barbara Bonvini ◽  
Stefano Bracco ◽  
Federico Delfino ◽  
Paola Laiolo ◽  
...  

As reported in the “Clean energy for all Europeans package” set by the EU, a sustainable transition from fossil fuels towards cleaner energy is necessary to improve the quality of life of citizens and the livability in cities. The exploitation of renewable sources, the improvement of energy performance in buildings and the need for cutting-edge national energy and climate plans represent important and urgent topics to be faced in order to implement the sustainability concept in urban areas. In addition, the spread of polygeneration microgrids and the recent development of energy communities enable a massive installation of renewable power plants, high-performance small-size cogeneration units, and electrical storage systems; moreover, properly designed local energy production systems make it possible to optimize the exploitation of green energy sources and reduce both energy supply costs and emissions. In the present paper, a set of key performance indicators is introduced in order to evaluate and compare different energy communities both from a technical and environmental point of view. The proposed methodology was used in order to assess and compare two sites characterized by the presence of sustainable energy infrastructures: the Savona Campus of the University of Genoa in Italy, where a polygeneration microgrid has been in operation since 2014 and new technologies will be installed in the near future, and the SPEED2030 District, an urban area near the Campus where renewable energy power plants (solar and wind), cogeneration units fed by hydrogen and storage systems are planned to be installed.


2017 ◽  
Vol 5 (5) ◽  
pp. 2328-2338 ◽  
Author(s):  
Dewei Rao ◽  
Lingyan Zhang ◽  
Zhaoshun Meng ◽  
Xirui Zhang ◽  
Yunhui Wang ◽  
...  

Since the turn of the new century, the increasing demand for high-performance energy storage systems has generated considerable interest in rechargeable ion batteries.


Author(s):  
Dai Jiu Yi ◽  
Soram Bobby Singh ◽  
Nam Hoon Kim ◽  
Joong Hee Lee

The rational design of free-standing hierarchic core–shell nanoporous architectures is a good strategy for fabricating next-generation electrode materials for application to electrochemical energy conversion/storage systems. Herein, hierarchical core–shell 3D Co9S8@Nix:Moy–Se...


Author(s):  
Xingzhao Zhang ◽  
Ying Chu ◽  
Ximing Cui ◽  
Yuxuan Li ◽  
Qinmin Pan

Solid-state lithium battery is considered as a promising candidate for next-generation energy storage systems because of its high safety and energy density. Solid polymer electrolyte is a paramount component in...


Author(s):  
Ahmet Artu Yıldırım ◽  
Dan Watson

Major Internet services are required to process a tremendous amount of data at real time. As we put these services under the magnifying glass, It's seen that distributed object storage systems play an important role at back-end in achieving this success. In this chapter, overall information of the current state-of –the-art storage systems are given which are used for reliable, high performance and scalable storage needs in data centers and cloud. Then, an experimental distributed object storage system (CADOS) is introduced for retrieving large data, such as hundreds of megabytes, efficiently through HTML5-enabled web browsers over big data – terabytes of data – in cloud infrastructure. The objective of the system is to minimize latency and propose a scalable storage system on the cloud using a thin RESTful web service and modern HTML5 capabilities.


2017 ◽  
Vol 5 (27) ◽  
pp. 14301-14309 ◽  
Author(s):  
S. Kamari Kaverlavani ◽  
S. E. Moosavifard ◽  
A. Bakouei

Increasing demand for green energy storage systems, arising from the rapid development of portable electronics, has triggered tremendous research efforts for designing new or high-performance electrodes.


Sign in / Sign up

Export Citation Format

Share Document