Use of virtual reality for spatial knowledge transfer

Author(s):  
Grégory Wallet ◽  
Hélène Sauzéon ◽  
Jérôme Rodrigues ◽  
Bernard N'Kaoua
2020 ◽  
Vol 33 (4-5) ◽  
pp. 479-503 ◽  
Author(s):  
Lukas Hejtmanek ◽  
Michael Starrett ◽  
Emilio Ferrer ◽  
Arne D. Ekstrom

Abstract Past studies suggest that learning a spatial environment by navigating on a desktop computer can lead to significant acquisition of spatial knowledge, although typically less than navigating in the real world. Exactly how this might differ when learning in immersive virtual interfaces that offer a rich set of multisensory cues remains to be fully explored. In this study, participants learned a campus building environment by navigating (1) the real-world version, (2) an immersive version involving an omnidirectional treadmill and head-mounted display, or (3) a version navigated on a desktop computer with a mouse and a keyboard. Participants first navigated the building in one of the three different interfaces and, afterward, navigated the real-world building to assess information transfer. To determine how well they learned the spatial layout, we measured path length, visitation errors, and pointing errors. Both virtual conditions resulted in significant learning and transfer to the real world, suggesting their efficacy in mimicking some aspects of real-world navigation. Overall, real-world navigation outperformed both immersive and desktop navigation, effects particularly pronounced early in learning. This was also suggested in a second experiment involving transfer from the real world to immersive virtual reality (VR). Analysis of effect sizes of going from virtual conditions to the real world suggested a slight advantage for immersive VR compared to desktop in terms of transfer, although at the cost of increased likelihood of dropout. Our findings suggest that virtual navigation results in significant learning, regardless of the interface, with immersive VR providing some advantage when transferring to the real world.


2022 ◽  
Author(s):  
Daniel Martin ◽  
Sandra Malpica ◽  
Diego Gutierrez ◽  
Belen Masia ◽  
Ana Serrano

Virtual reality (VR) is rapidly growing, with the potential to change the way we create and consume content. In VR, users integrate multimodal sensory information they receive, to create a unified perception of the virtual world. In this survey, we review the body of work addressing multimodality in VR, and its role and benefits in user experience, together with different applications that leverage multimodality in many disciplines. These works thus encompass several fields of research, and demonstrate that multimodality plays a fundamental role in VR; enhancing the experience, improving overall performance, and yielding unprecedented abilities in skill and knowledge transfer.


1999 ◽  
Author(s):  
Michael S. Miller ◽  
Deborah M. Clawson ◽  
Marc M. Sebrechts

2018 ◽  
Vol 102 ◽  
pp. 159-168 ◽  
Author(s):  
Luca Chittaro ◽  
Cynthia L. Corbett ◽  
G.A. McLean ◽  
Nicola Zangrando

2021 ◽  
Vol 21 (2) ◽  
pp. 1-28
Author(s):  
Minna Vasarainen ◽  
Sami Paavola ◽  
Liubov Vetoshkina

Extended reality (XR), here jointly referring to virtual, augmented, and mixed (VR, AR, MR) reality, is becoming more common in everyday working life. This paper presents a systematic literature review of academic publications on XR indicating changes in practical organization of work. We analyse both application areas of XR and theoretical and methodological approaches of XR research. The review process followed the PRISMA statement. Design, remote collaboration, and training were the main application areas of XR. XR enabled overcoming of obstacles set by time and space, safety, and resources by mediating experience of space. Research on XR applications in actual working life settings is yet relatively rare and covers primarily three areas: collaboration, evaluation of knowledge transfer, and work practices. Virtual reality was the most common form of applied XR, although the hardware used varied case by case. We identified four research areas regarding XR: collaboration, work practices, and evaluation of knowledge transfer, which somewhat followed the application areas. We did not find XR-specific methodologies in the reviewed articles, only few recent studies used novel ways of collecting research material, such as recording the movement in virtual reality. For now, XR still holds significant potential rather than clearly confirmed general advantages in working life.


Author(s):  
T. P. Kersten ◽  
D. Trau ◽  
F. Tschirschwitz

Abstract. Virtual Reality (VR) has established itself in recent years in the geosciences through its application in the immersive visualization of spatial data. In particular, VR offers new possibilities for the user to acquire knowledge through playful interaction within a virtual environment. This paper details the development and implementation of a new form of knowledge transfer, based on interactivity within a VR system. The particular use-case discussed is a VR application focusing on the four-masted barque Peking. From 2023 on, the restored ship will form an important exhibit in the future German Hafenmuseum in Hamburg. The new VR application offers users the possibility to enter and explore a virtual model of the Peking and find out more information at three separate points of interaction (3D object models, sails and ship flags). These interaction points provide a timely opportunity to examine several of the theoretical aspects of knowledge transfer through interactivity and integrate them in the development of the VR application. Above all, the VR application should be an important part of the learning process for the user. There remains still much potential for further research into more advanced approaches such as support for user-input questions and tailored content.


Author(s):  
Michael S. Miller ◽  
Deborah M. Clawson ◽  
Marc M. Sebrechts

Sign in / Sign up

Export Citation Format

Share Document