Variability-tolerant run-time workload allocation for MPSoC energy minimization under real-time constraints

Author(s):  
Francesco Paterna ◽  
Andrea Acquaviva ◽  
Alberto Caprara ◽  
Francesco Papariello ◽  
Giuseppe Desoli ◽  
...  
2012 ◽  
Vol 11 (4) ◽  
pp. 1-24 ◽  
Author(s):  
Francesco Paterna ◽  
Andrea Acquaviva ◽  
Francesco Papariello ◽  
Giuseppe Desoli ◽  
Luca Benini

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Balaji M ◽  
Chandrasekaran M ◽  
Vaithiyanathan Dhandapani

A Novel Rail-Network Hardware with simulation facilities is presented in this paper. The hardware is designed to facilitate the learning of application-oriented, logical, real-time programming in an embedded system environment. The platform enables the creation of multiple unique programming scenarios with variability in complexity without any hardware changes. Prior experimental hardware comes with static programming facilities that focus the students’ learning on hardware features and programming basics, leaving them ill-equipped to take up practical applications with more real-time constraints. This hardware complements and completes their learning to help them program real-world embedded systems. The hardware uses LEDs to simulate the movement of trains in a network. The network has train stations, intersections and parking slots where the train movements can be controlled by using a 16-bit Renesas RL78/G13 microcontroller. Additionally, simulating facilities are provided to enable the students to navigate the trains by manual controls using switches and indicators. This helps them get an easy understanding of train navigation functions before taking up programming. The students start with simple tasks and gradually progress to more complicated ones with real-time constraints, on their own. During training, students’ learning outcomes are evaluated by obtaining their feedback and conducting a test at the end to measure their knowledge acquisition during the training. Students’ Knowledge Enhancement Index is originated to measure the knowledge acquired by the students. It is observed that 87% of students have successfully enhanced their knowledge undergoing training with this rail-network simulator.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 695 ◽  
Author(s):  
Weiwei Bi ◽  
Yihui Xu ◽  
Hongyu Wang

Over the past few decades, various evolutionary algorithms (EAs) have been applied to the optimization design of water distribution systems (WDSs). An important research area is to compare the performance of these EAs, thereby offering guidance for the selection of the appropriate EAs for practical implementations. Such comparisons are mainly based on the final solution statistics and, hence, are unable to provide knowledge on how different EAs reach the final optimal solutions and why different EAs performed differently in identifying optimal solutions. To this end, this paper aims to compare the real-time searching behaviour of three widely used EAs, which are genetic algorithms (GAs), the differential evolution (DE) algorithm and the ant colony optimization (ACO). These three EAs are applied to five WDS benchmarking case studies with different scales and complexities, and a set of five metrics are used to measure their run-time searching quality and convergence properties. Results show that the run-time metrics can effectively reveal the underlying searching mechanisms associated with each EA, which significantly goes beyond the knowledge from the traditional end-of-run solution statistics. It is observed that the DE is able to identify better solutions if moderate and large computational budgets are allowed due to its great ability in maintaining the balance between the exploration and exploitation. However, if the computational resources are rather limited or the decision has to be made in a very short time (e.g., real-time WDS operation), the GA can be a good choice as it can always identify better solutions than the DE and ACO at the early searching stages. Based on the results, the ACO performs the worst for the five case study considered. The outcome of this study is the offer of guidance for the algorithm selection based on the available computation resources, as well as knowledge into the EA’s underlying searching behaviours.


Author(s):  
Junlong Zhou ◽  
Tongquan Wei ◽  
Mingsong Chen ◽  
Jianming Yan ◽  
Xiaobo Sharon Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document