Mathematical equations as executable models of mechanical systems

Author(s):  
Yun Zhu ◽  
Robert Cartwright ◽  
Aaron Ames ◽  
Raktim Bhattacharya ◽  
Edwin Westbrook ◽  
...  
2020 ◽  
pp. 59-63
Author(s):  
A.S. Bondarenko ◽  
A.S. Borovkov ◽  
I.M. Malay ◽  
V.A. Semyonov

The analysis of the current state of the reflection coefficient measurements in waveguides at millimeter waves is carried out. An approach for solving the problem of reproducing the reflection coefficient measurement scale is proposed. Mathematical equations, which are the basis of the reflection coefficient measurement equation are obtained. The method of determining the metrological performance of reflection coefficient unit’s reference standards is developed. The results of electrodynamic modeling and analytical calculations by the developed method are compared. It is shown that this method can be used for reproducing the reflection coefficient unit in the development of the State primary standard.


1991 ◽  
Vol 161 (2) ◽  
pp. 13-75 ◽  
Author(s):  
Lev V. Prokhorov ◽  
Sergei V. Shabanov

1972 ◽  
Vol 68 (2_Supplb) ◽  
pp. S44-S73 ◽  
Author(s):  
Eugene F. Bernstein

ABSTRACT Among the critical factors in organ perfusion are (1) the mechanical components of the system, (2) the composition of the perfusate, and (3) the perfusing conditions. In this review, particular consideration is given to the pump, the oxygenator, and cannulas in such systems. Emphasis is placed upon the selection of pertinent equipment for the goals of a particular perfusion experiment, based upon the criteria of adequacy of the perfusion. Common problems in organ perfusion are summarized, and potential solutions to the perfusion problem, involving either biologic or mechanical extracorporeal systems, are suggested.


Sign in / Sign up

Export Citation Format

Share Document