scholarly journals High performance matrix inversion based on LU factorization for multicore architectures

Author(s):  
Jack Dongarra ◽  
Mathieu Faverge ◽  
Hatem Ltaief ◽  
Piotr Luszczek
2016 ◽  
Vol 13 (15) ◽  
pp. 20160579-20160579 ◽  
Author(s):  
Kun Wang ◽  
Li Li ◽  
Feng Han ◽  
Fan Feng ◽  
Jun Lin

2008 ◽  
Vol 34 (3) ◽  
pp. 1-25 ◽  
Author(s):  
Kazushige Goto ◽  
Robert A. van de Geijn

2019 ◽  
Vol 11 (3) ◽  
pp. 318 ◽  
Author(s):  
Yangyang Liu ◽  
Emmanuel Boss ◽  
Alison Chase ◽  
Hongyan Xi ◽  
Xiaodong Zhang ◽  
...  

Phytoplankton in the ocean are extremely diverse. The abundance of various intracellular pigments are often used to study phytoplankton physiology and ecology, and identify and quantify different phytoplankton groups. In this study, phytoplankton absorption spectra ( a p h ( λ ) ) derived from underway flow-through AC-S measurements in the Fram Strait are combined with phytoplankton pigment measurements analyzed by high-performance liquid chromatography (HPLC) to evaluate the retrieval of various pigment concentrations at high spatial resolution. The performances of two approaches, Gaussian decomposition and the matrix inversion technique are investigated and compared. Our study is the first to apply the matrix inversion technique to underway spectrophotometry data. We find that Gaussian decomposition provides good estimates (median absolute percentage error, MPE 21–34%) of total chlorophyll-a (TChl-a), total chlorophyll-b (TChl-b), the combination of chlorophyll-c1 and -c2 (Chl-c1/2), photoprotective (PPC) and photosynthetic carotenoids (PSC). This method outperformed one of the matrix inversion algorithms, i.e., singular value decomposition combined with non-negative least squares (SVD-NNLS), in retrieving TChl-b, Chl-c1/2, PSC, and PPC. However, SVD-NNLS enables robust retrievals of specific carotenoids (MPE 37–65%), i.e., fucoxanthin, diadinoxanthin and 19 ′ -hexanoyloxyfucoxanthin, which is currently not accomplished by Gaussian decomposition. More robust predictions are obtained using the Gaussian decomposition method when the observed a p h ( λ ) is normalized by the package effect index at 675 nm. The latter is determined as a function of “packaged” a p h ( 675 ) and TChl-a concentration, which shows potential for improving pigment retrieval accuracy by the combined use of a p h ( λ ) and TChl-a concentration data. To generate robust estimation statistics for the matrix inversion technique, we combine leave-one-out cross-validation with data perturbations. We find that both approaches provide useful information on pigment distributions, and hence, phytoplankton community composition indicators, at a spatial resolution much finer than that can be achieved with discrete samples.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Lixin Xuan ◽  
Quan Zhou ◽  
Zhiqiang Wang ◽  
Tao Su

In recent years, one kind of novel hybrid polymer containing silicon has already been reported in the field of high-temperature resistance polymer. Gradually, it has been a research hotspot in the field of high-performance matrix resins because of excellent heat resistance and dielectric properties. The composite was prepared by M-aminophenylacetylene terminated polymethyldiphenylethynyl silane (MDPES-2) as a matrix and nonalkali glass cloth as reinforced material using a hot press process. The cure reaction of MDPES-2 was characterized. Meanwhile, heat resistance, mechanical properties, and dielectric properties of MDPES-2 composites were systematically studied in this paper. The results showed that flexural strength at room temperature is 321 MPa and flexural strength retention at 240°C was 98.3%. Flexural strength retention after thermal treatment at 500°C for 7 min was 84%. In addition, ε and dielectric dissipation factor ( tan δ ) were 3.9 and 2.0 × 10 − 3 (10 GHz).


Sign in / Sign up

Export Citation Format

Share Document